Modeling Hierarchical Brain Networks via Volumetric Sparse Deep Belief Network

被引:31
作者
Dong, Qinglin [1 ,2 ]
Ge, Fangfei [1 ,2 ]
Ning, Qiang [3 ]
Zhao, Yu [1 ,2 ]
Lv, Jinglei [4 ]
Huang, Heng [5 ]
Yuan, Jing [6 ,7 ]
Jian, Xi [8 ]
Shen, Dinggang [9 ,10 ,11 ]
Liu, Tianming [1 ,2 ]
机构
[1] Univ Georgia, Dept Comp Sci, Cort Architecture Imaging & Discovery Lab, Athens, GA 30602 USA
[2] Univ Georgia, Bioimaging Res Ctr, Athens, GA 30602 USA
[3] Shaanxi Normal Univ, Sch Phys & Informat Technol, Xian, Peoples R China
[4] Univ Melbourne, Dept Biomed Engn, Melbourne, Vic, Australia
[5] Northwestern Polytech Univ, Sch Automat, Xian, Peoples R China
[6] Nankai Univ, Coll Artificial Intelligence, Tianjin, Peoples R China
[7] Nankai Univ, Tianjin Key Lab Intelligent Robot, Tianjin, Peoples R China
[8] Univ Elect Sci & Technol China, MOE Key Lab Neuroinformat, Sch Life Sci & Technol, Chengdu, Peoples R China
[9] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27514 USA
[10] Univ N Carolina, BRIC, Chapel Hill, NC 27514 USA
[11] Korea Univ, Dept Brain & Cognit Engn, Seoul 02841, South Korea
基金
美国国家科学基金会; 中国国家自然科学基金; 美国国家卫生研究院;
关键词
Functional magnetic resonance imaging; Data models; Brain modeling; Task analysis; Deep learning; Image reconstruction; Training; Deep belief network (DBN); task fMRI; hierarchical brain network; NEURAL-NETWORKS; FMRI SIGNALS; TASK-FMRI; REPRESENTATION; CONNECTIVITY; ARCHITECTURE; RECOGNITION; INFERENCES; ATLASES;
D O I
10.1109/TBME.2019.2945231
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
It has been recently shown that deep learning models such as convolutional neural networks (CNN), deep belief networks (DBN) and recurrent neural networks (RNN), exhibited remarkable ability in modeling and representing fMRI data for the understanding of functional activities and networks because of their superior data representation capability and wide availability of effective deep learning tools. For example, spatial and/or temporal patterns of functional brain activities embedded in fMRI data can be effectively characterized and modeled by a variety of CNN/DBN/RNN deep learning models as shown in recent studies. However, it has been rarely investigated whether it is possible to directly infer hierarchical brain networks from volumetric fMRI data using deep learning models such as DBN. The perceived difficulties of such studies include very large number of input variables, very large number of training parameters, the lack of effective software tools, the challenge of results interpretation, and etc. To bridge these technical gaps, we designed a novel volumetric sparse deep belief network (VS-DBN) model and implemented it through the popular TensorFlow open source platform to reconstruct hierarchical brain networks from volumetric fMRI data based on the Human Connectome Project (HCP) 900 subjects release. Our experimental results showed that a large number of interpretable and meaningful brain networks can be robustly reconstructed from HCP 900 subjects in a hierarchical fashion, and importantly, these brain networks exhibit reasonably good consistency and correspondence across multiple HCP task-based fMRI datasets. Our work contributed a new general deep learning framework for inferring multiscale volumetric brain networks and offered novel insights into the hierarchical organization of functional brain architecture.
引用
收藏
页码:1739 / 1748
页数:10
相关论文
共 63 条
[11]  
Cho K. H., 2013, IEEE IJCNN, P1
[12]   Identifying Brain Networks of Multiple Time Scales via Deep Recurrent Neural Network [J].
Cui, Yan ;
Zhao, Shijie ;
Wang, Han ;
Xie, Li ;
Chen, Yaowu ;
Han, Junwei ;
Guo, Lei ;
Zhou, Fan ;
Liu, Tianming .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, PT III, 2018, 11072 :284-292
[13]   A core system for the implementation of task sets [J].
Dosenbach, Nico U. F. ;
Visscher, Kristina M. ;
Palmer, Erica D. ;
Miezin, Francis M. ;
Wenger, Kristin K. ;
Kang, Hyunseon C. ;
Burgund, E. Darcy ;
Grimes, Ansley L. ;
Schlaggar, Bradley L. ;
Petersen, Steven E. .
NEURON, 2006, 50 (05) :799-812
[14]   The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour [J].
Duncan, John .
TRENDS IN COGNITIVE SCIENCES, 2010, 14 (04) :172-179
[15]   Hierarchical Functional Modularity in the Resting-State Human Brain [J].
Ferrarini, Luca ;
Veer, Ilya M. ;
Baerends, Evelinda ;
van Tol, Marie-Jose ;
Renken, Remco J. ;
van der Wee, Nic J. A. ;
Veltman, Dirk. J. ;
Aleman, Andre ;
Zitman, Frans G. ;
Penninx, Brenda W. J. H. ;
van Buchem, Mark A. ;
Reiber, Johan H. C. ;
Rombouts, Serge A. R. B. ;
Milles, Julien .
HUMAN BRAIN MAPPING, 2009, 30 (07) :2220-2231
[16]  
Fischer Asja, 2012, Progress in Pattern Recognition, Image Analysis, ComputerVision, and Applications. Proceedings 17th Iberoamerican Congress, CIARP 2012, P14, DOI 10.1007/978-3-642-33275-3_2
[17]   The human brain is intrinsically organized into dynamic, anticorrelated functional networks [J].
Fox, MD ;
Snyder, AZ ;
Vincent, JL ;
Corbetta, M ;
Van Essen, DC ;
Raichle, ME .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (27) :9673-9678
[18]   Signal sampling for efficient sparse representation of resting state FMRI data [J].
Ge, Bao ;
Makkie, Milad ;
Wang, Jin ;
Zhao, Shijie ;
Jiang, Xi ;
Li, Xiang ;
Lv, Jinglei ;
Zhang, Shu ;
Zhang, Wei ;
Han, Junwei ;
Guo, Lei ;
Liu, Tianming .
BRAIN IMAGING AND BEHAVIOR, 2016, 10 (04) :1206-1222
[19]  
Ge FF, 2018, I S BIOMED IMAGING, P74, DOI 10.1109/ISBI.2018.8363526
[20]  
Ge FF, 2015, I S BIOMED IMAGING, P22, DOI 10.1109/ISBI.2015.7163807