Hard tiling problems with simple tiles

被引:92
作者
Moore, C [1 ]
Robson, JM
机构
[1] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA
[2] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA
[3] Santa Fe Inst, Santa Fe, NM 87501 USA
[4] Univ Bordeaux 1, LaBRI, F-33405 Talence, France
关键词
D O I
10.1007/s00454-001-0047-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is well known that the question of whether a given finite region can be tiled with a given set of tiles is NP-complete. We show that the same is true for the right tromino and square tetromino on the square lattice, or for the right tromino alone. In the process we show that Monotone 1-in-3 Satisfiability is NP-complete for planar cubic graphs. In higher dimensions we show NP-completeness for the domino and straight tromino for general regions on the cubic lattice, and for simply connected regions on the four-dimensional hypercubic lattice.
引用
收藏
页码:573 / 590
页数:18
相关论文
共 21 条
[1]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[2]   TILING FIGURES OF THE PLANE WITH 2 BARS [J].
BEAUQUIER, D ;
NIVAT, M ;
REMILA, E ;
ROBSON, M .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1995, 5 (01) :1-25
[3]   ON TRANSLATING ONE POLYOMINO TO TILE THE PLANE [J].
BEAUQUIER, D ;
NIVAT, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (06) :575-592
[4]  
Berger R., 1966, MEM AM MATH SOC, V66
[5]  
Di Battista G., 1999, GRAPH DRAWING
[6]  
Goldschlager L. M., 1977, SIGACT News, V9, P25, DOI 10.1145/1008354.1008356
[7]   Tiling allowing rotations only [J].
Goles, E ;
Rapaport, I .
THEORETICAL COMPUTER SCIENCE, 1999, 218 (02) :285-295
[8]  
Golomb S.W., 1994, Polyominoes, Puzzles, Patterns, Problems, and Packagings, Vsecond
[9]   STATISTICS OF DIMERS ON A LATTICE .1. NUMBER OF DIMER ARRANGEMENTS ON A QUADRATIC LATTICE [J].
KASTELEYN, P .
PHYSICA, 1961, 27 (12) :1209-+
[10]   Isohedral polyomino tiling of the plane [J].
Keating, K ;
Vince, A .
DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 21 (04) :615-630