Physics-Informed Deep Learning for Time-Domain Electromagnetic Radiation Problem

被引:0
作者
Ge, Yingze [1 ]
Guo, Liangshuai [1 ]
Li, Maokun [1 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Elect Engn, Beijing 100084, Peoples R China
来源
2022 IEEE MTT-S INTERNATIONAL MICROWAVE BIOMEDICAL CONFERENCE (IMBIOC) | 2022年
基金
中国国家自然科学基金;
关键词
computational electromagnetics; electromagnetic radiation; machine learning; physics-informed nerual networks;
D O I
10.1109/IMBIOC52515.2022.9790302
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We explore the application of physics-informed deep learning to solve time-domain electromagnetic problems. This method takes advantage of the differentiability of neural networks and fully integrated with first principles. Compared to traditional approach, there is no need of discretization. Numerical experiment verifies the accuracy of this scheme.
引用
收藏
页码:114 / 116
页数:3
相关论文
共 11 条
  • [1] [Anonymous], ARXIV
  • [2] Discovering governing equations from data by sparse identification of nonlinear dynamical systems
    Brunton, Steven L.
    Proctor, Joshua L.
    Kutz, J. Nathan
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (15) : 3932 - 3937
  • [3] Solving high-dimensional partial differential equations using deep learning
    Han, Jiequn
    Jentzen, Arnulf
    Weinan, E.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (34) : 8505 - 8510
  • [4] Physics informed machine learning: Seismic wave equation
    Karimpouli, Sadegh
    Tahmasebi, Pejman
    [J]. GEOSCIENCE FRONTIERS, 2020, 11 (06) : 1993 - 2001
  • [5] Li ZY, 2021, Arxiv, DOI [arXiv:2010.08895, 10.48550/arXiv.2010.08895]
  • [6] Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
    Raissi, M.
    Perdikaris, P.
    Karniadakis, G. E.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 378 : 686 - 707
  • [7] Data-driven discovery of partial differential equations
    Rudy, Samuel H.
    Brunton, Steven L.
    Proctor, Joshua L.
    Kutz, J. Nathan
    [J]. SCIENCE ADVANCES, 2017, 3 (04):
  • [8] Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification
    Tripathy, Rohit K.
    Bilionis, Ilias
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 375 : 565 - 588
  • [9] Wang S., 2022, J ORRRPATATIORRAL PH, V449
  • [10] Xu K., 2018, DEEP LEARNING PARTIA