Enhanced Electrochemical Performance of LiNi0.8Co0.1Mn0.1O2 Cathode for Lithium-Ion Batteries by Precursor Preoxidation

被引:33
|
作者
Zhang, Congcong [1 ]
Liu, Mengmeng [1 ]
Pan, Guangjie [2 ]
Liu, Siyang [3 ]
Liu, Da [3 ]
Chen, Chunguang [3 ]
Su, Junming [1 ]
Huang, Tao [1 ]
Yu, Aishui [1 ,3 ]
机构
[1] Fudan Univ, Collaborat Innovat Ctr Chem Energy Mat, Shanghai Key Lab Mol Catalysis & Innovat Mat, Lab Adv Mat,Inst New Energy, Shanghai 200438, Peoples R China
[2] SAIC Volkswagen Automot Co Ltd, Shanghai 201805, Peoples R China
[3] Fudan Univ, Dept Chem, Shanghai 200438, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2018年 / 1卷 / 08期
关键词
LiNi0.8Co0.1Mn0.1O2; precursor; Na2S2O8; preoxidation; cycling performance; lattice defect; anisotropic shrinkage/expansion; VOLTAGE CYCLING STABILITY; LINI0.6CO0.2MN0.2O2; CATHODE; NI-RICH; CAPACITY; LINI0.8CO0.15AL0.05O2; DEGRADATION; TRANSITION; CHALLENGES; ELECTRODES; BEHAVIOR;
D O I
10.1021/acsaem.8b00994
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nickel-rich layered oxide LiNi0.8Co0.1Mn0.1O2 suffers from severe structural instability, causing inferior electrochemical performance. For a solution to this problem, a Na2S2O8 preoxidation method is employed to modify the surface structure of precursor Ni0.8Co0.1Mn0.1(OH)(2). Transmission electron microscopy images show that the lattice orientations of the precursor are well-ordered, and the resulted product LiNi0.8Co0.1Mn0.1O2 with this precursor exhibits a well-defined layered structure without a cation-mixing layer on the surface. X-ray photoelectron spectroscopy and Rietveld refinement results indicate that the contents of Ni2+, Co2+, and Li+/Ni2+ disordering ratio are significantly reduced at the same time. ICP-AES and titration results suggest that the average oxidation state of Ni is enhanced after Na2S2O8 preoxidation. A further electrochemical kinetic analysis using electrochemical impedance spectroscopy and a potentiostatic intermittent titration technique reveals that the LiNi0.8Co0.1Mn0.1O2 sample after precursor preoxidation possesses a fast charge transfer and Li+ diffusion process. It also performs excellent cycling stability and rate capability. Remarkably, the sample with an optimum oxidation time of 30 min (S-NCM-30min) delivers a high discharge capacity of 203.5 mA h g(-1) and retains 99.0% capacity after 100 cycles in the voltage range 3.0-4.3 V. The superior electrochemical performance is attributed to the well-ordered surface structure with Na2S2O8 preoxidation, which can suppress the anisotropic shrinkage/expansion and meanwhile stabilize the original layered structure of LiNi0.8Co0.1Mn0.1O2 material during repeated charge-discharge cycling.
引用
收藏
页码:4374 / 4384
页数:21
相关论文
共 50 条
  • [1] Electrolyte perspective on stabilizing LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries
    Zhu, Xiao-Feng
    Li, Xiu
    Liang, Tian-Quan
    Liu, Xin-Hua
    Ma, Jian-Min
    RARE METALS, 2023, 42 (02) : 387 - 398
  • [2] Electrolyte perspective on stabilizing LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries
    Xiao-Feng Zhu
    Xiu Li
    Tian-Quan Liang
    Xin-Hua Liu
    Jian-Min Ma
    Rare Metals, 2023, 42 (02) : 387 - 398
  • [3] Silver Nanocoating of LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium-Ion Batteries
    Li, Xintong
    Chang, Kai
    Abbas, Somia M.
    El-Tawil, Rasha S.
    Abdel-Ghany, Ashraf E.
    Hashem, Ahmed M.
    Wang, Hua
    Coughlin, Amanda L.
    Zhang, Shixiong
    Mauger, Alain
    Zhu, Likun
    Julien, Christian M.
    MICROMACHINES, 2023, 14 (05)
  • [4] Electrolyte perspective on stabilizing LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries
    Xiao-Feng Zhu
    Xiu Li
    Tian-Quan Liang
    Xin-Hua Liu
    Jian-Min Ma
    Rare Metals, 2023, 42 : 387 - 398
  • [5] Synthesis of Ni0.8Co0.1Mn0.1(OH)2 precursor and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium batteries
    Huang, Yue
    Wang, Zhi-xing
    Li, Xin-hai
    Guo, Hua-jun
    Wang, Jie-xi
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2015, 25 (07) : 2253 - 2259
  • [6] Enhanced Electrochemical Properties of Polyaniline-Coated LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium-Ion Batteries
    Song, Liubin
    Tang, Fuli
    Xiao, Zhongliang
    Cao, Zhong
    Zhu, Huali
    Li, Anxian
    JOURNAL OF ELECTRONIC MATERIALS, 2018, 47 (10) : 5896 - 5904
  • [7] Enhanced Electrochemical Properties of Polyaniline-Coated LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium-Ion Batteries
    Liubin Song
    Fuli Tang
    Zhongliang Xiao
    Zhong Cao
    Huali Zhu
    Anxian Li
    Journal of Electronic Materials, 2018, 47 : 5896 - 5904
  • [8] Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries
    Xiong, Xunhui
    Wang, Zhixing
    Yue, Peng
    Guo, Huajun
    Wu, Feixiang
    Wang, Jiexi
    Li, Xinhai
    JOURNAL OF POWER SOURCES, 2013, 222 : 318 - 325
  • [10] In-situ electrochemical polymerization of polypyrrole on LiNi0.8Co0.1Mn0.1O2 cathode with improved performance for lithium-ion batteries
    Nie, Haolong
    Shang, Chaoqun
    Hu, Pu
    Li, Yajie
    MATERIALS LETTERS, 2023, 335