High-temperature flexural creep of ZrB2-SiC ceramics in argon atmosphere

被引:16
|
作者
Guo, Wei-Ming [1 ]
Zhang, Guo-Jun [1 ]
Lin, Hua-Tay [2 ]
机构
[1] Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
[2] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
基金
中国国家自然科学基金;
关键词
Creep; ZrB2-SiC; Four-point flexure; Microstructure; Cavitations; DIBORIDE-SILICON CARBIDE; ZIRCONIUM; DEFORMATION; ALUMINA; OXIDATION; COMPOSITE; BEHAVIOR; NITRIDE; AIR;
D O I
10.1016/j.ceramint.2011.06.046
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Four-point flexure creep deformation of ZrB2-30 vol% SiC ceramics in argon atmosphere under a static load of 19 MPa for 0-100 h at 1500 and 1600 degrees C was investigated. The strain rate at 1600 degrees C was 3.7 times higher than that at 1500 degrees C. Microstructural evolution during creep consisted of nucleation and growth of triple-point cavitations which were always associated with SiC particles. Due to the low stress, only isolated cavitations were nucleated, and no microcracks were formed. For up to 100 h at 1500 and 1600 degrees C, the grains maintained their size and shape. The cavitations in both size and number showed no obvious difference from 26 to 100 h at 1500 degrees C, whereas that showed a significant increase from 26 to 100 h at 1600 degrees C. Present study suggested that ZrB2-30 vol% SiC exhibited relatively good microstructural stability and creep resistance at 1500 degrees C in argon atmosphere. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:831 / 835
页数:5
相关论文
共 50 条
  • [1] Combustion synthesis of high-temperature ZrB2-SiC ceramics
    Iatsyuk, I. V.
    Pogozhev, Yu. S.
    Levashov, E. A.
    Novikov, A. V.
    Kochetov, N. A.
    Kovalev, D. Yu.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (07) : 2792 - 2801
  • [2] Flexural creep deformation of ZrB2/SiC ceramics in oxidizing atmosphere
    Talmy, I. G.
    Zaykoski, J. A.
    Martin, C. A.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2008, 91 (05) : 1441 - 1447
  • [3] SiC whiskers: A strategy to modify the high-temperature performance of laminated ZrB2-SiC ceramics
    Wang, Weiwei
    Wei, Chuncheng
    Liu, Zhen
    Zhang, Zhongya
    Ma, Xuefei
    Li, Shuang
    Wang, Peng
    CERAMICS INTERNATIONAL, 2020, 46 (07) : 9347 - 9352
  • [4] High-temperature oxidation of ZrB2-SiC and ZrB2-SiC-ZrSi2 ceramics up to 1700°C in air
    Lavrenko, V. O.
    Panasyuk, A. D.
    Grigorev, O. M.
    Koroteev, O. V.
    Kotenko, V. A.
    POWDER METALLURGY AND METAL CERAMICS, 2012, 51 (3-4) : 217 - 221
  • [5] Aqueous gelcasting of ZrB2-SiC ultra high temperature ceramics
    He, Rujie
    Zhang, Xinghong
    Hu, Ping
    Liu, Chen
    Han, Wenbo
    CERAMICS INTERNATIONAL, 2012, 38 (07) : 5411 - 5418
  • [6] Self-Healing in High Temperature ZrB2-SiC Ceramics
    Burlachenko, A. G.
    Mirovoy, Yu. A.
    Dedova, E. S.
    Buyakova, S. P.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019, 2019, 2167
  • [7] Ultra High Temperature Oxidation Behavior of ZrB2-SiC Ceramics in Air
    Oguri, Kazuyuki
    Sekigawa, Takahiro
    Kamita, Tohru
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 2011, 75 (04) : 207 - 212
  • [8] Pressureless sintering of ultra-high temperature ZrB2-SiC ceramics
    Cheng, Zhi-Qiang
    Zhou, Chang-Ling
    Tian, Ting-Yan
    Sun, Cheng-Gong
    Shi, Zhi-Hong
    Fan, Jie
    HIGH-PERFORMANCE CERAMICS V, PTS 1 AND 2, 2008, 368-372 : 1746 - +
  • [9] High temperature mechanical properties of laminated ZrB2-SiC based ceramics
    Wei, Chuncheng
    Liu, Xinchao
    Niu, Jinye
    Feng, Liu
    Yue, Hongzhi
    CERAMICS INTERNATIONAL, 2016, 42 (16) : 18148 - 18153
  • [10] Fracture behavior of laminated ZrB2-SiC ceramics at high temperature in air
    Wei, Chuncheng
    Li, Shuang
    Yin, Kaili
    Liu, Xinchao
    Wang, Peng
    Zhou, Lijuan
    CERAMICS INTERNATIONAL, 2018, 44 (04) : 4385 - 4391