Towards Spatio-Temporal Aware Traffic Time Series Forecasting

被引:91
作者
Cirstea, Razvan-Gabriel [1 ]
Yang, Bin [1 ]
Guo, Chenjuan [1 ]
Tung Kieu [1 ]
Pan, Shirui [2 ]
机构
[1] Aalborg Univ, Dept Comp Sci, Aalborg, Denmark
[2] Monash Univ, Fac Informat Technol, Clayton, Vic, Australia
来源
2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022) | 2022年
关键词
D O I
10.1109/ICDE53745.2022.00262
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic time series forecasting is challenging due to complex spatio-temporal dynamics-time series from different locations often have distinct patterns; and for the same time series, patterns may vary across time, where, for example, there exist certain periods across a day showing stronger temporal correlations. Although recent forecasting models, in particular deep learning based models, show promising results, they suffer from being spatio-temporal agnostic. Such spatio-temporal agnostic models employ a shared parameter space irrespective of the time series locations and the time periods and they assume that the temporal patterns are similar across locations and do not evolve across time, which may not always hold, thus leading to sub-optimal results. In this work, we propose a framework that aims at turning spatio-temporal agnostic models to spatio-temporal aware models. To do so, we encode time series from different locations into stochastic variables, from which we generate location-specific and time-varying model parameters to better capture the spatio-temporal dynamics. We show how to integrate the framework with canonical attentions to enable spatio-temporal aware attentions. Next, to compensate for the additional overhead introduced by the spatio-temporal aware model parameter generation process, we propose a novel window attention scheme, which helps reduce the complexity from quadratic to linear, making spatio-temporal aware attentions also have competitive efficiency. We show strong empirical evidence on four traffic time series datasets, where the proposed spatiotemporal aware attentions outperform state-of-the-art methods in term of accuracy and efficiency.
引用
收藏
页码:2900 / 2913
页数:14
相关论文
共 52 条
[1]  
Anderson T. W., 1962, Tech. Rep.
[2]  
[Anonymous], 2020, CVPR
[3]  
[Anonymous], 1964, BREAKTHROUGHS STAT
[4]  
[Anonymous], 2018, AAAI
[5]  
Bai L, 2020, ADV NEUR IN, V33
[6]  
Bai L, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P1981
[7]   Passenger Demand Forecasting with Multi-Task Convolutional Recurrent Neural Networks [J].
Bai, Lei ;
Yao, Lina ;
Kanhere, Sala S. ;
Yang, Zheng ;
Chu, Jing ;
Wang, Xianzhi .
ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT II, 2019, 11440 :29-42
[8]  
Beltagy I., 2020, Longformer: The Long-Document Transformer, DOI DOI 10.48550/ARXIV.2004.05150
[9]  
Bin Yang S, 2021, PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, P3286
[10]  
Box G.E., 2015, Time Series Analysis: Forecasting and Control