Guided Frequency Separation Network for Real-World Super-Resolution

被引:38
|
作者
Zhou, Yuanbo [1 ]
Deng, Wei [1 ]
Tong, Tong [1 ]
Gao, Qinquan [1 ]
机构
[1] Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou, Fujian, Peoples R China
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020) | 2020年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPRW50498.2020.00222
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Training image pairs are unavailable generally in real-world super-resolution. Although the LR images can be down-scaled from HR images, some real-world characteristics (such as artifacts or sensor noise) have been removed from the degraded images. Therefore, most of state-of-the-art super-resolved methods often fail in real-world scenes. In order to address aforementioned problem, we proposed an unsupervised super-resolved solution. The method can be divided into two stages: domain transformation and super-resolution. A color-guided domain mapping network was proposed to alleviate the color shift in domain transformation process. In particular, we proposed the Color Attention Residual Block (CARB) as the basic unit of the domain mapping network. The CARB which can dynamically regulate the parameters is driven by input data. Therefore, the domain mapping network can result in the powerful generalization performance. Moreover, we modified the discriminator of the super-resolution stage so that the network not only keeps the high frequency features, but also maintains the low frequency features. Finally, we constructed an EdgeLoss to improve the texture details. Experimental results show that our solution can achieve a competitive performance on NTIRE 2020 real-world super-resolution challenge.
引用
收藏
页码:1722 / 1731
页数:10
相关论文
共 50 条
  • [1] Frequency Separation for Real-World Super-Resolution
    Fritsche, Manuel
    Gu, Shuhang
    Timofte, Radu
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 3599 - 3608
  • [2] KGSR: A kernel guided network for real-world blind super-resolution
    Yan, Qingsen
    Niu, Axi
    Wang, Chaoqun
    Dong, Wei
    Woźniak, Marcin
    Zhang, Yanning
    Pattern Recognition, 2024, 147
  • [3] KGSR: A kernel guided network for real-world blind super-resolution
    Yan, Qingsen
    Niu, Axi
    Wang, Chaoqun
    Dong, Wei
    Wozniak, Marcin
    Zhang, Yanning
    PATTERN RECOGNITION, 2024, 147
  • [4] Semantic Segmentation Guided Real-World Super-Resolution
    Aakerberg, Andreas
    Johansen, Anders S.
    Nasrollahi, Kamal
    Moeslund, Thomas B.
    2022 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW 2022), 2022, : 449 - 458
  • [5] Frequency Generation for Real-World Image Super-Resolution
    Guan, Wenxue
    Li, Haobo
    Xu, Dawei
    Liu, Jiaxin
    Gong, Shenghua
    Liu, Jun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (08) : 7029 - 7040
  • [6] Learning the Frequency Domain Aliasing for Real-World Super-Resolution
    Hao, Yukun
    Yu, Feihong
    ELECTRONICS, 2024, 13 (02)
  • [7] Multiscale generative adversarial network for real-world super-resolution
    Sun, Ying
    Yang, Zhiwen
    Tao, Bo
    Jiang, Guozhang
    Hao, Zhiqiang
    Chen, Baojia
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (21):
  • [8] Taylor Neural Network for Real-World Image Super-Resolution
    Wei, Pengxu
    Xie, Ziwei
    Li, Guanbin
    Lin, Liang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 1942 - 1951
  • [9] Real-World Thermal Image Super-Resolution
    Allahham, Moaaz
    Aakerberg, Andreas
    Nasrollahi, Kamal
    Moeslund, Thomas B.
    ADVANCES IN VISUAL COMPUTING (ISVC 2021), PT I, 2021, 13017 : 3 - 14
  • [10] Unsupervised Learning for Real-World Super-Resolution
    Lugmayr, Andreas
    Danelljan, Martin
    Timofte, Radu
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 3408 - 3416