The 2-adic valuations of differences of Stirling numbers of the second kind

被引:5
|
作者
Zhao, Wei [1 ,2 ]
Zhao, Jianrong [3 ]
Hong, Shaofang [1 ]
机构
[1] Sichuan Univ, Math Coll, Chengdu 610064, Peoples R China
[2] Sci & Technol Commun Secur Lab, Chengdu 610041, Peoples R China
[3] Southwestern Univ Finance & Econ, Sch Econ Math, Chengdu 610074, Peoples R China
基金
美国国家科学基金会;
关键词
Stirling numbers of the second kind; 2-adic valuation; Ring of p-adic integers; Generating function; Convolution identity; DIVISIBILITY; CONGRUENCES;
D O I
10.1016/j.jnt.2015.01.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let m, n, k and c be positive integers, v(2)(k) be the 2-adic valuation of k and S(n, k) be the Stirling numbers of the second kind. We show that if 2 <= m <= n and c is odd, then nu(2)(S(c2(n+1), 2(m) - 1) S(c2(n), 2(m) - 1)) = n + 1 except when n = m = 2 and c = 1, in which case nu(2)(S(8, 3) - S(4,3)) = 6. This solves a conjecture of Lengyel proposed in 2009. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:309 / 320
页数:12
相关论文
共 50 条
  • [21] ASYMPTOTICS OF STIRLING NUMBERS OF SECOND KIND
    BLEICK, WE
    WANG, PCC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 42 (02) : 575 - 580
  • [22] ASYMPTOTICS OF STIRLING NUMBERS OF SECOND KIND
    BLEICK, WE
    WANG, PCC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A38 - A38
  • [23] Congruences for Stirling Numbers of the Second Kind
    Chan, O-Yeat
    Manna, Dante
    GEMS IN EXPERIMENTAL MATHEMATICS, 2010, 517 : 97 - 111
  • [24] A Formula for the Stirling Numbers of the Second Kind
    Xi, Gao-Wen
    Luo, Qiu-Ming
    AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (08): : 762 - 762
  • [25] An Equation of Stirling Numbers of the Second Kind
    DU Chun-yu
    数学季刊, 2006, (02) : 261 - 263
  • [26] Stirling numbers of the second kind and Bell numbers for graphs
    Kereskenyi-Balogh, Zsofia
    Nyul, Gabor
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 58 : 264 - 274
  • [27] On the p-adic properties of Stirling numbers of the first kind
    S. F. Hong
    M. Qiu
    Acta Mathematica Hungarica, 2020, 161 : 366 - 395
  • [28] On the p-adic valuation of stirling numbers of the first kind
    Leonetti, P.
    Sanna, C.
    ACTA MATHEMATICA HUNGARICA, 2017, 151 (01) : 217 - 231
  • [29] On p-adic properties of the Stirling numbers of the first kind
    Lengyel, Tamas
    JOURNAL OF NUMBER THEORY, 2015, 148 : 73 - 94
  • [30] On the p-adic valuation of stirling numbers of the first kind
    P. Leonetti
    C. Sanna
    Acta Mathematica Hungarica, 2017, 151 : 217 - 231