The 2-adic valuations of differences of Stirling numbers of the second kind
被引:5
|
作者:
Zhao, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Math Coll, Chengdu 610064, Peoples R China
Sci & Technol Commun Secur Lab, Chengdu 610041, Peoples R ChinaSichuan Univ, Math Coll, Chengdu 610064, Peoples R China
Zhao, Wei
[1
,2
]
Zhao, Jianrong
论文数: 0引用数: 0
h-index: 0
机构:
Southwestern Univ Finance & Econ, Sch Econ Math, Chengdu 610074, Peoples R ChinaSichuan Univ, Math Coll, Chengdu 610064, Peoples R China
Zhao, Jianrong
[3
]
Hong, Shaofang
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Math Coll, Chengdu 610064, Peoples R ChinaSichuan Univ, Math Coll, Chengdu 610064, Peoples R China
Hong, Shaofang
[1
]
机构:
[1] Sichuan Univ, Math Coll, Chengdu 610064, Peoples R China
[2] Sci & Technol Commun Secur Lab, Chengdu 610041, Peoples R China
[3] Southwestern Univ Finance & Econ, Sch Econ Math, Chengdu 610074, Peoples R China
Stirling numbers of the second kind;
2-adic valuation;
Ring of p-adic integers;
Generating function;
Convolution identity;
DIVISIBILITY;
CONGRUENCES;
D O I:
10.1016/j.jnt.2015.01.016
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let m, n, k and c be positive integers, v(2)(k) be the 2-adic valuation of k and S(n, k) be the Stirling numbers of the second kind. We show that if 2 <= m <= n and c is odd, then nu(2)(S(c2(n+1), 2(m) - 1) S(c2(n), 2(m) - 1)) = n + 1 except when n = m = 2 and c = 1, in which case nu(2)(S(8, 3) - S(4,3)) = 6. This solves a conjecture of Lengyel proposed in 2009. (C) 2015 Elsevier Inc. All rights reserved.