A novel approach to fabricating a nanotwinned surface on a ternary nickel alloy

被引:31
作者
Zhang, Zhenyu [1 ,2 ,3 ]
Wang, Bo [1 ,5 ]
Huang, Siling [1 ]
Wen, Bin [4 ]
Yang, Song [1 ]
Zhang, Bi [1 ,6 ]
Lin, Cheng-Te [5 ]
Jiang, Nan [5 ]
Jin, Zhongmin [7 ]
Guo, Dongming [1 ]
机构
[1] Dalian Univ Technol, Minist Educ, Key Lab Precis & Nontradit Machining Technol, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Changzhou Inst, Changzhou 213164, Peoples R China
[3] Tsinghua Univ, State Key Lab Tribol, Beijing 100084, Peoples R China
[4] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
[5] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Marine Mat & Related Technol, Ningbo 315201, Zhejiang, Peoples R China
[6] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
[7] Univ Leeds, Sch Mech Engn, Leeds LS2 9JT, W Yorkshire, England
关键词
Molecular dynamics; Nanotwinning; Nanotwinned surface; Transmission electron microscopy; Temary nickel alloy; HIGH ELECTRICAL-CONDUCTIVITY; EMBEDDED-ATOM METHOD; PLASTIC-DEFORMATION; MAXIMUM STRENGTH; SILICON-WAFERS; STRAIN-RATE; METALS; COPPER; CU; NANOINDENTATION;
D O I
10.1016/j.matdes.2016.06.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Deformation nanotwinning is performed using molecular dynamics (MD) on a single crystal in a ternary nickel(Ni) alloy. Generalized embedded-atom method (EAM) potential functions are obtained for the ternary Ni alloy. The critical twinning stress is 4.48 GPa, calculated by the MD simulations. Detwinning, restoring and regenerating of nanotwins take place during the unloading process, contributing to the remaining of the ductility. According to the MD simulations, a novel approach is proposed to fabricating a nanotwinned surface using nano indentation at room temperature. This is different from previous reports, in which high temperature, high pressure or chemical regents are employed. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 33 条
[1]   Epitaxial nanotwinned Cu films with high strength and high conductivity [J].
Anderoglu, O. ;
Misra, A. ;
Wang, H. ;
Ronning, F. ;
Hundley, M. F. ;
Zhang, X. .
APPLIED PHYSICS LETTERS, 2008, 93 (08)
[2]   In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries [J].
Bufford, D. ;
Liu, Y. ;
Wang, J. ;
Wang, H. ;
Zhang, X. .
NATURE COMMUNICATIONS, 2014, 5
[3]   Large-scale nanotwins in Cu films/Cu nanowires via stress engineering by a high-energy ion beam bombardment process: growth and characterization [J].
Chan, Tsung-Cheng ;
Chen, Yu-Ze ;
Chueh, Yu-Lun ;
Liao, Chien-Neng .
JOURNAL OF MATERIALS CHEMISTRY C, 2014, 2 (46) :9805-9812
[4]   Deformation twinning in nanocrystalline aluminum [J].
Chen, MW ;
Ma, E ;
Hemker, KJ ;
Sheng, HW ;
Wang, YM ;
Cheng, XM .
SCIENCE, 2003, 300 (5623) :1275-1277
[5]   EMBEDDED-ATOM METHOD - DERIVATION AND APPLICATION TO IMPURITIES, SURFACES, AND OTHER DEFECTS IN METALS [J].
DAW, MS ;
BASKES, MI .
PHYSICAL REVIEW B, 1984, 29 (12) :6443-6453
[6]   Fundamental differences in the plasticity of periodically twinned nanowires in Au, Ag, Al, Cu, Pb and Ni [J].
Deng, C. ;
Sansoz, F. .
ACTA MATERIALIA, 2009, 57 (20) :6090-6101
[7]   Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper [J].
Fang, T. H. ;
Li, W. L. ;
Tao, N. R. ;
Lu, K. .
SCIENCE, 2011, 331 (6024) :1587-1590
[8]  
Guo JY, 2006, J MATER SCI TECHNOL, V22, P789
[9]   High strength and high electrical conductivity bulk Cu [J].
Han, K ;
Walsh, RP ;
Ishmaku, A ;
Toplosky, V ;
Brandao, L ;
Embury, JD .
PHILOSOPHICAL MAGAZINE, 2004, 84 (34) :3705-3716
[10]   Unidirectional Growth of Microbumps on (111)-Oriented and Nanotwinned Copper [J].
Hsiao, Hsiang-Yao ;
Liu, Chien-Min ;
Lin, Han-Wen ;
Liu, Tao-Chi ;
Lu, Chia-Ling ;
Huang, Yi-Sa ;
Chen, Chih ;
Tu, K. N. .
SCIENCE, 2012, 336 (6084) :1007-1010