The impact of vessel size, orientation and intravascular contribution on the neurovascular fingerprint of BOLD bSSFP fMRI

被引:44
作者
Baez-Yanez, Mario Gilberto [1 ,2 ]
Ehses, Philipp [1 ,3 ]
Mirkes, Christian [1 ,4 ]
Tsai, Philbert S. [5 ]
Kleinfeld, David [5 ,6 ]
Scheffler, Klaus [1 ,7 ]
机构
[1] Max Planck Inst Biol Cybernet, Dept High Field Magnet Resonance, Tubingen, Germany
[2] Univ Tubingen, Grad Training Ctr Neurosci, Tubingen, Germany
[3] German Ctr Neurodegenerat Dis DZNE, Bonn, Germany
[4] Skope Magnet Resonance Technol, Zurich, Switzerland
[5] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[6] Univ Calif, Sect Neurobiol, La Jolla, CA USA
[7] Univ Tubingen, Dept Biomed Magnet Resonance, Tubingen, Germany
关键词
Vascular cortical network; Layer specific BOLD fMRI; Orientation-dependent BOLD fMRI; Extra- and intravascular contribution; Balanced SSFP; STATE FREE PRECESSION; MAGNETIC-SUSCEPTIBILITY; TRANSVERSE RELAXATION; OXYGEN-SATURATION; FIELD-STRENGTH; FUNCTIONAL MRI; SIGNAL CHANGES; NETWORK MODEL; WHOLE-BLOOD; HUMAN-BRAIN;
D O I
10.1016/j.neuroimage.2017.09.015
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Monte Carlo simulations have been used to analyze oxygenation-related signal changes in pass-band balanced steady state free precession (bSSFP) as well as in gradient echo (GE) and spin echo (SE) sequences. Signal changes were calculated for artificial cylinders and neurovascular networks acquired from the mouse parietal cortex by two-photon laser scanning microscopy at 1 1 mu m isotropic resolution. Signal changes as a function of vessel size, blood volume, vessel orientation to the main magnetic field B-0 as well as relations of intra-and extravascular and of micro- and macrovascular contributions have been analyzed. The results show that bSSFP is highly sensitive to extravascular and microvascular components. Furthermore, GE and bSSFP, and to a lesser extent SE, exhibit a strong dependence of their signal change on the orientation of the vessel network to B-0.
引用
收藏
页码:13 / 23
页数:11
相关论文
共 52 条
[1]   Effect of diffusion in inhomogeneous magnetic fields on balanced steady-state free precession [J].
Bieri, O. ;
Scheffler, K. .
NMR IN BIOMEDICINE, 2007, 20 (01) :1-10
[2]   The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow [J].
Blinder, Pablo ;
Tsai, Philbert S. ;
Kaufhold, John P. ;
Knutsen, Per M. ;
Suhl, Harry ;
Kleinfeld, David .
NATURE NEUROSCIENCE, 2013, 16 (07) :889-U150
[3]   Field Strength Dependence of R1 and R2* Relaxivities of Human Whole Blood to ProHance, Vasovist, and Deoxyhemoglobin [J].
Blockley, N. P. ;
Jiang, L. ;
Gardener, A. G. ;
Ludman, C. N. ;
Francis, S. T. ;
Gowland, P. A. .
MAGNETIC RESONANCE IN MEDICINE, 2008, 60 (06) :1313-1320
[4]   Avascular anatomical network model of the spatio-temporal response to brain activation [J].
Boas, David A. ;
Jones, Stephanie R. ;
Devor, Anna ;
Huppert, Theodore J. ;
Dale, Anders M. .
NEUROIMAGE, 2008, 40 (03) :1116-1129
[5]  
Bowen C.V., 2005, P INT SOC MAGN RESON, P119
[6]   MR CONTRAST DUE TO INTRAVASCULAR MAGNETIC-SUSCEPTIBILITY PERTURBATIONS [J].
BOXERMAN, JL ;
HAMBERG, LM ;
ROSEN, BR ;
WEISSKOFF, RM .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :555-566
[7]   Ultra-high resolution imaging of the human brain using acquisition-weighted imaging at 9.4 T [J].
Budde, Juliane ;
Shajan, G. ;
Scheffler, Klaus ;
Pohmann, Rolf .
NEUROIMAGE, 2014, 86 :592-598
[8]   Functional MRI in Human Subjects with Gradient-Echo and Spin-Echo EPI at 9.4 T [J].
Budde, Juliane ;
Shajan, G. ;
Zaitsev, Maxim ;
Scheffler, Klaus ;
Pohmann, Rolf .
MAGNETIC RESONANCE IN MEDICINE, 2014, 71 (01) :209-218
[9]   A novel three-dimensional computer-assisted method for a quantitative study of microvascular networks of the human cerebral cortex [J].
Cassot, F ;
Lauwers, F ;
Fouard, C ;
Prohaska, S ;
Lauwers-Cances, V .
MICROCIRCULATION, 2006, 13 (01) :1-18
[10]  
CHU SCK, 1990, MAGN RESON MED, V13, P239, DOI 10.1002/mrm.1910130207