Membrane free water electrolysis under 1.23 V with Ni3Se4/Ni anode in alkali and Pt cathode in acid

被引:38
作者
Anantharaj, Sengeni [1 ,2 ]
Karthik, Kannimuthu [1 ,2 ]
Amarnath, Thangavel S. [3 ]
Chatterjee, Shubham [3 ]
Subhashini, Elangovan [3 ]
Swaathini, Karukkampalyam C. [3 ]
Karthick, Pitchiah E. [4 ]
Kundu, Subrata [1 ,2 ]
机构
[1] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, Uttar Pradesh, India
[2] CSIR Cent Electrochem Res Inst CECRI, MED, Karaikkudi 630006, Tamil Nadu, India
[3] CSIR Cent Electrochem Res Inst CECRI, Ctr Educ CFE, Karaikkudi 630006, Tamil Nadu, India
[4] IISER Mohali, India Inst Sci & Educ Res, Dept Chem Sci, Mohali 140306, Punjab, India
关键词
Water splitting; Hybrid electrolyser; Nickel selenide; Underpotential water splitting; Voltammetry; Hydrogen production; OXYGEN-EVOLUTION ELECTROCATALYSTS; NICKEL FOAM; EFFICIENT; HYDROGEN; PERFORMANCE; NISE; NANOPARTICLES; STABILITY; OXIDATION; FILM;
D O I
10.1016/j.apsusc.2019.01.231
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen generation through water electrolysis is a promising way of storing excess energies obtained from intermittent sources. Many catalysts including have been evaluated for acidic or alkaline water electrolysers. Here, we propose the use of the Ni3Se4/Ni foam 3D electrode as anode for a membrane-free hybrid water electrolyser where the catholyte (0.5 M H2SO4) and anolyte (1 M KOH) are separated by an acid and alkali stable silicate disc of diameter 1 cm and thickness 0.3 cm to achieve the combined benefit of splitting water below its reversible potential 1.23 V. We have realized the initiation of water splitting just with 0.62 V. Significantly, the benchmarking current density 10 mA cm(-2) was achieved at a cell voltage of 1.12 V which is far below the reversible potential of water oxidation (1.23 V) with the cell Ni3Se4/Ni vertical bar 1 M KOH vertical bar vertical bar 0.5 M H2SO4 vertical bar Pt. The expected issue of salt formation can be easily overcome just by refilling the anode and cathode compartments with fresh electrolytes. This novel approach of underpotential splitting of water with a membrane-free acid-base hybrid electrolyser will certainly lead to several innovative achievements in the field of hydrogen generation through water electrolysis in the future.
引用
收藏
页码:784 / 792
页数:9
相关论文
共 33 条
[1]   Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment [J].
Anantharaj, S. ;
Ede, S. R. ;
Karthick, K. ;
Sankar, S. Sam ;
Sangeetha, K. ;
Karthik, P. E. ;
Kundu, Subrata .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (04) :744-771
[2]   Petal-like hierarchical array of ultrathin Ni(OH)2 nanosheets decorated with Ni(OH)2 nanoburls: a highly efficient OER electrocatalyst [J].
Anantharaj, S. ;
Karthik, P. E. ;
Kundu, Subrata .
CATALYSIS SCIENCE & TECHNOLOGY, 2017, 7 (04) :882-893
[3]   Unprotected and interconnected Ru0 nano-chain networks: advantages of unprotected surfaces in catalysis and electrocatalysis [J].
Anantharaj, S. ;
Jayachandran, M. ;
Kundu, Subrata .
CHEMICAL SCIENCE, 2016, 7 (05) :3188-3205
[4]   Self-assembled IrO2 nanoparticles on a DNA scaffold with enhanced catalytic and oxygen evolution reaction (OER) activities [J].
Anantharaj, S. ;
Karthik, P. E. ;
Kundu, Subrata .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (48) :24463-24478
[5]   Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: A review with insights on structure, activity and mechanism [J].
Anantharaj, Sengeni ;
Karthick, Kannimuthu ;
Kundu, Subrata .
MATERIALS TODAY ENERGY, 2017, 6 :1-26
[6]   Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces [J].
Anantharaj, Sengeni ;
Karthick, Kannimuthu ;
Venkatesh, Murugadoss ;
Simha, Tangella V. S. V. ;
Salunke, Ashish S. ;
Ma, Lian ;
Liang, Hong ;
Kundu, Subrata .
NANO ENERGY, 2017, 39 :30-43
[7]   Enhanced Water Oxidation with Improved Stability by Aggregated RuO2-NaPO3 Core-shell Nanostructures in Acidic Medium [J].
Anantharaj, Sengeni ;
Kundu, Subrata .
CURRENT NANOSCIENCE, 2017, 13 (04) :333-341
[8]   Microwave-Initiated Facile Formation of Ni3Se4 Nanoassemblies for Enhanced and Stable Water Splitting in Neutral and Alkaline Media [J].
Anantharaj, Sengeni ;
Kennedy, Jeevarathinam ;
Kundu, Subrata .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (10) :8714-8728
[9]   Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review [J].
Anantharaj, Sengeni ;
Ede, Sivasankara Rao ;
Sakthikumar, Kuppan ;
Karthick, Kannimuthu ;
Mishra, Soumyaranjan ;
Kundu, Subrata .
ACS CATALYSIS, 2016, 6 (12) :8069-8097
[10]   Pt Nanoparticle Anchored Molecular Self-Assemblies of DNA: An Extremely Stable and Efficient HER Electrocatalyst with Ultralow Pt Content [J].
Anantharaj, Sengeni ;
Karthik, Pitchiah E. ;
Subramanian, Balasubramanian ;
Kundu, Subrata .
ACS CATALYSIS, 2016, 6 (07) :4660-4672