ON Z2-GRADED IDENTITIES OF THE SUPER TENSOR PRODUCT OF UT2(F) BY THE GRASSMANN ALGEBRA

被引:1
作者
Tomaz da Silva, Viviane Ribeiro [1 ]
机构
[1] Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Matemat, BR-30161970 Belo Horizonte, MG, Brazil
关键词
UPPER-TRIANGULAR MATRICES; POLYNOMIAL-IDENTITIES; CODIMENSIONS; VARIETIES;
D O I
10.1007/s11856-011-0127-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a field of characteristic zero and E be the unitary Grassmann algebra generated over an infinite-dimensional F-vector space L. Denote by E = E-(0) circle plus E-(1) an arbitrary Z(2)-grading of E such that the subspace L is homogeneous. Given a superalgebra A = A((0)) circle plus A((1)), define the superalgebra A (circle times) over cap E by A (circle times) over cap E = (A((0)) circle times E-(0)) circle plus (A((1)) circle times E-(1)). Note that when E is the canonical grading of E then A (circle times) over cap E is the Grassmann envelope of A. In this work we find bases of Z(2)-graded identities and we describe the Z(2)-graded codimension and cocharacter sequences for the superalgebras UT2(F) (circle times) over cap E, when the algebra UT2(F) of 2 x 2 upper triangular matrices over F is endowed with its canonical grading.
引用
收藏
页码:441 / 462
页数:22
相关论文
共 18 条
[1]   ZP-codimensions of ZP-identities of Grassmann algebra [J].
Anisimov, N .
COMMUNICATIONS IN ALGEBRA, 2001, 29 (09) :4211-4230
[2]  
da Silva V.R.T., 2008, THESIS U FEDERAL MIN
[3]   Gradings on the algebra of upper triangular matrices and their graded identities [J].
Di Vincenzo, OM ;
Koshlukov, P ;
Valenti, A .
JOURNAL OF ALGEBRA, 2004, 275 (02) :550-566
[4]   Subvarieties of the varieties generated by the superalgebra M1,1(E) or M2(K) [J].
Di Vincenzo, OM ;
Drensky, V ;
Nardozza, V .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (01) :437-461
[5]   On Z2-graded polynomial identities of the Grassmann algebra [J].
Di Vincenzo, Onofrio M. ;
Tomaz da Silva, Viviane Ribeiro .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (1-2) :56-72
[6]   COCHARACTERS, CODIMENSIONS AND HILBERT SERIES OF THE POLYNOMIAL-IDENTITIES FOR 2X2 MATRICES WITH INVOLUTION [J].
DRENSKY, V ;
GIAMBRUNO, A .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1994, 46 (04) :718-733
[7]  
Drensky V. S., 2000, FREE ALGEBRAS PI ALG
[8]   Codimension growth and minimal superalgebras [J].
Giambruno, A ;
Zaicev, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (12) :5091-5117
[9]   Minimal varieties of algebras of exponential growth [J].
Giambruno, A ;
Zaicev, M .
ADVANCES IN MATHEMATICS, 2003, 174 (02) :310-323
[10]   Polynomial identities on superalgebras and almost polynomial growth [J].
Giambruno, A ;
Mishchenko, S ;
Zaicev, M .
COMMUNICATIONS IN ALGEBRA, 2001, 29 (09) :3787-3800