LIPSCHITZ GEOMETRY OF CURVES AND SURFACES DEFINABLE IN O-MINIMAL STRUCTURES

被引:5
作者
Birbrair, Lev [1 ]
机构
[1] Univ Fed Ceara, Dept Matemat, Fortaleza, Ceara, Brazil
关键词
D O I
10.1215/ijm/1258554366
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is devoted to the generalization of the theory of Hoelder Complexes, i.e., Lipschitz classification of germs of semialgebraic surfaces, for the definable surfaces in o-minimal structures. The theory is based on the Rosenlicht valuations on the corresponding Hardy fields. We obtain a complete answer for the case of polynomially bounded o-minimal structures and for the case of isolated singularities for general o-minimal structures.
引用
收藏
页码:1325 / 1353
页数:29
相关论文
共 19 条
[1]  
Bernig A, 2002, MATH NACHR, V245, P5, DOI 10.1002/1522-2616(200211)245:1<5::AID-MANA5>3.0.CO
[2]  
2-E
[3]  
Birbrair L, 1999, HOUSTON J MATH, V25, P453
[4]  
Birbrair L, 2000, MICH MATH J, V47, P125
[5]   Characteristic exponents of semialgebraic singularities [J].
Birbrair, L ;
Cano, F .
MATHEMATISCHE NACHRICHTEN, 2004, 276 :23-30
[6]  
Birbrair L., 2000, Rev. Mat. Complut, V13, P369, DOI [10.5209/rev_REMA.2000.v13.n2.17080, DOI 10.5209/REV_REMA.2000.V13.N2.17080]
[7]   Local Lipschitz geometry of real weighted homogeneous surfaces [J].
Birbrair, Lev ;
Fernandes, Alexandre .
GEOMETRIAE DEDICATA, 2008, 135 (01) :211-217
[8]  
BURAGO D., 2001, A course in metric geometry, V33, DOI 10.1090/gsm/033
[9]   Local geometry of singular real analytic surfaces [J].
Grieser, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (04) :1559-1577
[10]  
Grieser D, 2002, HOUSTON J MATH, V28, P741