Nonclassical Jacobi Polynomials and Sobolev Orthogonality

被引:4
|
作者
Bruder, Andrea [1 ]
Littlejohn, L. L. [2 ]
机构
[1] Colorado Coll, Tutt Sci Ctr, Dept Math & Comp Sci, Colorado Springs, CO 80903 USA
[2] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
Primary 33C45; 34B30; 47B25; Secondary 34B20; 47B65;
D O I
10.1007/s00025-011-0102-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the second-order Jacobi differential expression here, the Jacobi parameters are alpha > -1 and beta = -1. This is a nonclassical setting since the classical setting for this expression is generally considered when alpha, beta > -1. In the classical setting, it is well-known that the Jacobi polynomials are (orthogonal) eigenfunctions of a self-adjoint operator T (alpha, beta) , generated by the Jacobi differential expression, in the Hilbert space L (2)((-1,1);(1-x) (alpha) (1 + x) (beta)). When alpha > -1 and beta = -1, the Jacobi polynomial of degree 0 does not belong to the Hilbert space L (2)((-1,1);(1 - x) (alpha) (1 + x)(-1)). However, in this paper, we show that the full sequence of Jacobi polynomials forms a complete orthogonal set in a Hilbert-Sobolev space W (alpha) , generated by the inner product We also construct a self-adjoint operator T (alpha) , generated by l (alpha,-1)[center dot] in W (alpha) , that has the Jacobi polynomials as eigenfunctions.
引用
收藏
页码:283 / 313
页数:31
相关论文
共 50 条
  • [21] Asymptotically extremal polynomials with respect to varying weights and application to Sobolev orthogonality
    Mendoza, C. Diaz
    Orive, R.
    Cabrera, H. Pijeira
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 346 (02) : 480 - 488
  • [22] Orthogonality of the big −1 Jacobi polynomials for non-standard parameters
    Cohl, Howard S.
    Costas-Santos, Roberto S.
    arXiv, 2023,
  • [23] Differential Properties of Jacobi-Sobolev Polynomials and Electrostatic Interpretation
    Pijeira-Cabrera, Hector
    Quintero-Roba, Javier
    Toribio-Milane, Juan
    MATHEMATICS, 2023, 11 (15)
  • [24] Asymptotics of Sobolev orthogonal polynomials for coherent pairs of Jacobi type
    Delft Univ of Technology, Delft, Netherlands
    J Comput Appl Math, 1 (87-97):
  • [25] Analytic properties of nondiagonal Jacobi-Sobolev orthogonal polynomials
    Moreno-Balcázar, JJ
    Martínez-Finkelshtein, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) : 393 - 401
  • [26] Eigenvalue Problem for Discrete Jacobi-Sobolev Orthogonal Polynomials
    Manas-Manas, Juan F.
    Moreno-Balcazar, Juan J.
    Wellman, Richard
    MATHEMATICS, 2020, 8 (02)
  • [27] Differential equations for discrete Jacobi-Sobolev orthogonal polynomials
    Duran, Antonio J.
    de la Iglesia, Manuel D.
    JOURNAL OF SPECTRAL THEORY, 2018, 8 (01) : 191 - 234
  • [28] Asymptotics of Sobolev orthogonal polynomials for coherent pairs of Jacobi type
    Meijer, HG
    Piñar, MA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 108 (1-2) : 87 - 97
  • [29] Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials
    Dimitrov, Dimitar K.
    Mello, Mirela V.
    Rafaeli, Fernando R.
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (03) : 263 - 276
  • [30] Orthogonality and asymptotics of Pseudo-Jacobi polynomials for non-classical parameters
    Jordaan, K.
    Tookos, F.
    JOURNAL OF APPROXIMATION THEORY, 2014, 178 : 1 - 12