Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes

被引:216
作者
Rakov, Dmitrii A. [1 ,2 ]
Chen, Fangfang [1 ,2 ]
Ferdousi, Shammi A. [1 ]
Li, Hua [3 ,4 ]
Pathirana, Thushan [1 ]
Simonov, Alexandr N. [5 ,6 ]
Howlett, Patrick C. [1 ,2 ]
Atkin, Rob [3 ]
Forsyth, Maria [1 ,2 ]
机构
[1] Deakin Univ, Inst Frontier Mat, Geelong, Vic, Australia
[2] Deakin Univ, ARC Ctr Excellence Electromat Sci ACES, Burwood, Vic, Australia
[3] Univ Western Australia, Sch Mol Sci, Crawley, WA, Australia
[4] Univ Western Australia, Ctr Microscopy Characterisat & Anal, Crawley, WA, Australia
[5] Monash Univ, Sch Chem, Clayton, Vic, Australia
[6] Monash Univ, ARC Ctr Excellence Electromat Sci, Clayton, Vic, Australia
基金
澳大利亚研究理事会;
关键词
LITHIUM METAL ANODE; MOLECULAR-DYNAMICS; DOUBLE-LAYER; INTERFACIAL NANOSTRUCTURE; TRANSFERENCE NUMBER; TEMPERATURE; SALT; SIMULATION; CONDUCTIVITY; CAPACITANCE;
D O I
10.1038/s41563-020-0673-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Non-uniform metal deposition and dendrite formation reduce the efficiency, safety and life of batteries with metal anodes. The influence of these factors in a sodium electrolyte now shows how a molten-salt-like structure at the electrode surface results in dendrite-free metal cycling at higher rates. Non-uniform metal deposition and dendrite formation in high-density energy storage devices reduces the efficiency, safety and life of batteries with metal anodes. Superconcentrated ionic-liquid electrolytes (for example 1:1 ionic liquid:alkali ion) coupled with anode preconditioning at more negative potentials can completely mitigate these issues, and therefore revolutionize high-density energy storage devices. However, the mechanisms by which very high salt concentration and preconditioning potential enable uniform metal deposition and prevent dendrite formation at the metal anode during cycling are poorly understood, and therefore not optimized. Here, we use atomic force microscopy and molecular dynamics simulations to unravel the influence of these factors on the interface chemistry in a sodium electrolyte, demonstrating how a molten-salt-like structure at the electrode surface results in dendrite-free metal cycling at higher rates. Such a structure will support the formation of a more favourable solid electrolyte interphase, accepted as being a critical factor in stable battery cycling. This new understanding will enable engineering of efficient anode electrodes by tuning the interfacial nanostructure via salt concentration and high-voltage preconditioning.
引用
收藏
页码:1096 / +
页数:7
相关论文
共 50 条
[1]   AFM and STM Studies on the Surface Interaction of [BMP]TFSA and (EMIm]TFSA Ionic Liquids with Au(111) [J].
Atkin, Rob ;
El Abedin, Sherif Zein ;
Hayes, Robert ;
Gasparotto, Luiz H. S. ;
Borisenko, Natalia ;
Endres, Frank .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (30) :13266-13272
[2]   Surface structure at the ionic liquid-electrified metal interface [J].
Baldelli, Steven .
ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (03) :421-431
[3]   A comparative AFM study of the interfacial nanostructure in imidazolium or pyrrolidinium ionic liquid electrolytes for zinc electrochemical systems [J].
Begic, Srdan ;
Li, Hua ;
Atkin, Rob ;
Hollenkamp, Anthony F. ;
Howlett, Patrick C. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (42) :29337-29347
[4]  
Black J., 2016, International Journal of Environmental Protection, P1, DOI [10.5963/IJEP0601001, DOI 10.5963/IJEP0601001]
[5]   Bias-Dependent Molecular-Level Structure of Electrical Double Layer in Ionic Liquid on Graphite [J].
Black, Jennifer M. ;
Walters, Deron ;
Labuda, Aleksander ;
Feng, Guang ;
Hillesheim, Patrick C. ;
Dai, Sheng ;
Cummings, Peter T. ;
Kalinin, Sergei V. ;
Proksch, Roger ;
Balke, Nina .
NANO LETTERS, 2013, 13 (12) :5954-5960
[6]   [Py1,4]FSI-NaFSI-Based Ionic Liquid Electrolyte for Sodium Batteries: Na+ Solvation and Interfacial Nanostructure on Au(111) [J].
Carstens, Timo ;
Lahiri, Abhishek ;
Borisenko, Natalia ;
Endres, Frank .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (27) :14736-14741
[7]   Na-Ion Solvation and High Transference Number in Superconcentrated Ionic Liquid Electrolytes: A Theoretical Approach [J].
Chen, Fangfang ;
Howlett, Patrick ;
Forsyth, Maria .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (01) :105-114
[8]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[9]   A Review of Solid Electrolyte Interphases on Lithium Metal Anode [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Wei, Fei ;
Zhang, Ji-Guang ;
Zhang, Qiang .
ADVANCED SCIENCE, 2016, 3 (03)
[10]   Designing solid-liquid interphases for sodium batteries [J].
Choudhury, Snehashis ;
Wei, Shuya ;
Ozhabes, Yalcin ;
Gunceler, Deniz ;
Zachman, Michael J. ;
Tu, Zhengyuan ;
Shin, Jung Hwan ;
Nath, Pooja ;
Agrawal, Akanksha ;
Kourkoutis, Lena F. ;
Arias, Tomas A. ;
Archer, Lynden A. .
NATURE COMMUNICATIONS, 2017, 8