Sensing and lasing applications of whispering gallery mode microresonators

被引:64
作者
Zheng, Yu [1 ,2 ]
Wu, Zhifang [2 ,3 ]
Shum, Perry Ping [1 ,2 ]
Xu, Zhilin [4 ]
Keiser, Gerd [5 ]
Humbert, Georges [6 ]
Zhang, Hailiang [1 ,2 ]
Zeng, Shuwen [6 ]
Xuan Quyen Dinh [2 ,7 ]
机构
[1] Nanyang Technol Univ, Sch EEE, COFT, Singapore 639798, Singapore
[2] CNRS, NTU, Thales Res Alliance, CINTRA, Singapore 637553, Singapore
[3] Huaqiao Univ, Coll Informat Sci & Engn, Fujian Key Lab Light Propagat & Transformat, Xiamen 361021, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Phys, Ctrter Gravitat Expt, Wuhan 430074, Peoples R China
[5] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[6] Univ Limoges, UMR 7252, CNRS, XLIM Res Inst, F-87060 Limoges, France
[7] Thales Solut Asia Pte Ltd, R&T, Singapore 498755, Singapore
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
WGM microresonators; sensors; microlasers; microcavities; TEMPERATURE SENSOR; OPTICAL RESONATORS; LASERS; MICROLASER; EMISSION; MICROCAVITIES; RESONANCES; DETECTOR; COUPLER;
D O I
10.29026/oea.2018.180015
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical whispering gallery mode (WGM) microresonators have attracted great attention due to their remarkable properties such as extremely high quality factor, small mode volume, tight confinement of modes, and strong evanescent field. All these properties of WGM microresonators have ensured their great potentials for applications, such as physical sensors, bio/chemical sensors and microlasers. In this mini-review, the key parameters and coupling conditions of WGM microresonators are firstly introduced. The geometries of WGM optical microcavities are presented based on their fabrication methods. This is followed by the discussion on the state-of-the-art applications of WGM microresonators in sensors and microlasers.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 76 条
[1]  
Baaske MD, 2016, NAT PHOTONICS, V10, P733, DOI [10.1038/NPHOTON.2016.177, 10.1038/nphoton.2016.177]
[2]  
Baaske MD, 2014, NAT NANOTECHNOL, V9, P933, DOI [10.1038/nnano.2014.180, 10.1038/NNANO.2014.180]
[3]   Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication [J].
Chandrahalim, Hengky ;
Chen, Qiushu ;
Said, Ali A. ;
Dugan, Mark ;
Fan, Xudong .
LAB ON A CHIP, 2015, 15 (10) :2335-2340
[4]   Biochemical sensors based on polymer microrings with sharp asymmetrical resonance [J].
Chao, CY ;
Guo, LJ .
APPLIED PHYSICS LETTERS, 2003, 83 (08) :1527-1529
[5]   Whispering gallery modes in a holmium doped glass microsphere: Temperature sensor in the second biological window [J].
de Sousa-Vieira, L. ;
Rios, S. ;
Martin, I. R. ;
Garcia-Rodriguez, L. ;
Sigaev, V. N. ;
Savinkov, V. I. ;
Shakhgildyan, G. Yu .
OPTICAL MATERIALS, 2018, 83 :207-211
[6]   Brillouin-scattering-induced transparency and non-reciprocal light storage [J].
Dong, Chun-Hua ;
Shen, Zhen ;
Zou, Chang-Ling ;
Zhang, Yan-Lei ;
Fu, Wei ;
Guo, Guang-Can .
NATURE COMMUNICATIONS, 2015, 6
[7]   Chip-Scale Fabrication of Uniform Lead Halide Perovskites Microlaser Array and Photodetector Array [J].
Duan, Zonghui ;
Wang, Yujie ;
Li, Gang ;
Wang, Shuai ;
Yi, Ningbo ;
Liu, Shuai ;
Xiao, Shumin ;
Song, Qinghai .
LASER & PHOTONICS REVIEWS, 2018, 12 (01)
[8]   Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers [J].
Dumeige, Yannick ;
Trebaol, Stephane ;
Ghisa, Laura ;
Nguyen, Thi Kim Ngan ;
Tavernier, Herve ;
Feron, Patrice .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2008, 25 (12) :2073-2080
[9]   Integrated humidity sensor based on SU-8 polymer microdisk microresonator [J].
Eryurek, M. ;
Tasdemir, Z. ;
Karadag, Y. ;
Anand, S. ;
Kilinc, N. ;
Alaca, B. E. ;
Kiraz, A. .
SENSORS AND ACTUATORS B-CHEMICAL, 2017, 242 :1115-1120
[10]   Continuous-wave upconverting nanoparticle microlasers [J].
Fernandez-Bravo, Angel ;
Yao, Kaiyuan ;
Barnard, Edward S. ;
Borys, Nicholas J. ;
Levy, Elizabeth S. ;
Tian, Bining ;
Tajon, Cheryl A. ;
Moretti, Luca ;
Altoe, M. Virginia ;
Aloni, Shaul ;
Beketayev, Kenes ;
Scotognella, Francesco ;
Cohen, Bruce E. ;
Chan, Emory M. ;
Schuck, P. James .
NATURE NANOTECHNOLOGY, 2018, 13 (07) :572-577