An Enhanced Evaporation Rate Water-Cycle Algorithm for Global Optimization

被引:24
作者
Hussien, Abdelazim G. [1 ,2 ]
Hashim, Fatma A. [3 ]
Qaddoura, Raneem [4 ]
Abualigah, Laith [5 ,6 ,7 ]
Pop, Adrian [1 ]
机构
[1] Linkoping Univ, Dept Comp & Informat Sci, SE-58183 Linkoping, Sweden
[2] Fayoum Univ, Fac Sci, Al Fayyum 63514, Egypt
[3] Helwan Univ, Fac Engn, Cairo 11795, Egypt
[4] Al Hussein Tech Univ, Sch Comp & Informat, Amman 11831, Jordan
[5] Al Ahliyya Amman Univ, Hourani Ctr Appl Sci Res, Amman 19328, Jordan
[6] Middle East Univ, Fac Informat Technol, Amman 11831, Jordan
[7] Univ Sains Malaysia, Sch Comp Sci, George Town 11800, Malaysia
关键词
water-cycle algorithm; WCA; local escaping operator; global optimization; SEARCH ALGORITHM; CEC; 2017; DESIGN; VARIANTS; HYBRIDS;
D O I
10.3390/pr10112254
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Water-cycle algorithm based on evaporation rate (ErWCA) is a powerful enhanced version of the water-cycle algorithm (WCA) metaheuristics algorithm. ErWCA, like other algorithms, may still fall in the sub-optimal region and have a slow convergence, especially in high-dimensional tasks problems. This paper suggests an enhanced ErWCA (EErWCA) version, which embeds local escaping operator (LEO) as an internal operator in the updating process. ErWCA also uses a control-randomization operator. To verify this version, a comparison between EErWCA and other algorithms, namely, classical ErWCA, water cycle algorithm (WCA), butterfly optimization algorithm (BOA), bird swarm algorithm (BSA), crow search algorithm (CSA), grasshopper optimization algorithm (GOA), Harris Hawks Optimization (HHO), whale optimization algorithm (WOA), dandelion optimizer (DO) and fire hawks optimization (FHO) using IEEE CEC 2017, was performed. The experimental and analytical results show the adequate performance of the proposed algorithm.
引用
收藏
页数:22
相关论文
共 69 条
  • [1] Nature-Inspired Optimization Algorithms for Text Document Clustering-A Comprehensive Analysis
    Abualigah, Laith
    Gandomi, Amir H.
    Elaziz, Mohamed Abd
    Hussien, Abdelazim G.
    Khasawneh, Ahmad M.
    Alshinwan, Mohammad
    Houssein, Essam H.
    [J]. ALGORITHMS, 2020, 13 (12)
  • [2] Lightning search algorithm: a comprehensive survey
    Abualigah, Laith
    Abd Elaziz, Mohamed
    Hussien, Abdelazim G.
    Alsalibi, Bisan
    Jalali, Seyed Mohammad Jafar
    Gandomi, Amir H.
    [J]. APPLIED INTELLIGENCE, 2021, 51 (04) : 2353 - 2376
  • [3] A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments
    Abualigah, Laith
    Diabat, Ali
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2021, 24 (01): : 205 - 223
  • [4] Abualigah LM., 2017, New Trends in Information Technology (NTIT)-2017, P60
  • [5] Dwarf Mongoose Optimization Algorithm
    Agushaka, Jeffrey O.
    Ezugwu, Absalom E.
    Abualigah, Laith
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 391
  • [6] Artificial intelligence techniques in refrigeration system modelling and optimization: A multi-disciplinary review
    Ahmed, Rasel
    Mahadzir, Shuhaimi
    Rozali, Nor Erniza Mohammad
    Biswas, Kallol
    Matovu, Fahad
    Ahmed, Kamran
    [J]. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2021, 47
  • [7] Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
    Al-qaness, Mohammed A. A.
    Ewees, Ahmed A.
    Fan, Hong
    Abd El Aziz, Mohamed
    [J]. JOURNAL OF CLINICAL MEDICINE, 2020, 9 (03)
  • [8] Artificial electric field algorithm for engineering optimization problems
    Anita
    Yadav, Anupam
    Kumar, Nitin
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2020, 149
  • [9] Butterfly optimization algorithm: a novel approach for global optimization
    Arora, Sankalap
    Singh, Satvir
    [J]. SOFT COMPUTING, 2019, 23 (03) : 715 - 734
  • [10] A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
    Askarzadeh, Alireza
    [J]. COMPUTERS & STRUCTURES, 2016, 169 : 1 - 12