Evaluation on Spaceborne Multispectral Images, Airborne Hyperspectral, and LiDAR Data for Extracting Spatial Distribution and Estimating Aboveground Biomass of Wetland Vegetation Suaeda salsa

被引:16
|
作者
Du, Yingkun [1 ]
Wang, Jing [2 ]
Liu, Zhengjun [3 ]
Yu, Haiying [4 ]
Li, Zehui [2 ]
Cheng, Hang [1 ]
机构
[1] Wuhan Univ, Sch Resource & Environm Sci, Land Resource Management, Wuhan 430079, Hubei, Peoples R China
[2] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Hubei, Peoples R China
[3] Chinese Acad Surveying & Mapping, Inst Photogrammetry & Remote Sensing, Beijing 100830, Peoples R China
[4] Fourth Inst Anhui Surveying & Mapping, R&D Ctr Mapping & Geospatial Informat, Hefei 230031, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Aboveground biomass; fine classification; hyperspectral image; LiDAR data; multispectral image; Suaeda salsa; DISCRETE-RETURN LIDAR; WAVE-FORM LIDAR; LEAF-AREA INDEX; SPECIES CLASSIFICATION; GLOBAL VEGETATION; FOREST; COMBINATION; ACCURACY; MARSHES; QUALITY;
D O I
10.1109/JSTARS.2018.2886046
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Suaeda salsa (S. salsa) has a significant protective effect on salt marshes in coastal wetlands. In this study, the abilities of airborne multispectral images, spaceborne hyperspectral images, and LiDAR data in spatial distribution extraction and aboveground biomass (AB) estimation of S. salsa were explored for mapping the spatial distribution of S. salsa AB. Results showed that the increasing spectral and structural features were conducive to improving the classification accuracy of wetland vegetation and the AB estimation accuracy of S. salsa. The fusion of hyperspectral and LiDAR data provided the highest accuracies for wetlands classification and AB estimation of S. salsa in the study. Multispectral images alone provided relatively high user's and producer's accuracies of S. salsa classification (87.04% and 88.28%, respectively). Compared to multispectral images, hyperspectral data with more spectral features slightly improved the Kappa coefficient and overall accuracy. The AB estimation reached a relatively reliable accuracy based only on hyperspectral data (R-2 of 0.812, root-mean-square error of 0.295, estimation error of 24.56%, residual predictive deviation of 2.033, and the sums of squares ratio of 1.049). The addition of LiDAR data produced a limited improvement in the process of extraction and AB estimation of S. salsa. The spatial distribution of mapped S. salsa AB was consistent with the field survey results. This study provided an important reference for the effective information extraction and AB estimation of wetland vegetation S. salsa.
引用
收藏
页码:200 / 209
页数:10
相关论文
共 6 条
  • [1] Retrieving aboveground biomass of wetland Phragmites australis (common reed) using a combination of airborne discrete-return LiDAR and hyperspectral data
    Luo, Shezhou
    Wang, Cheng
    Xi, Xiaohuan
    Pan, Feifei
    Qian, Mingjie
    Peng, Dailiang
    Nie, Sheng
    Qin, Haiming
    Lin, Yi
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 58 : 107 - 117
  • [2] Synergy of UAV-LiDAR Data and Multispectral Remote Sensing Images for Allometric Estimation of Phragmites Australis Aboveground Biomass in Coastal Wetland
    Ge, Chentian
    Zhang, Chao
    Zhang, Yuan
    Fan, Zhekui
    Kong, Mian
    He, Wentao
    REMOTE SENSING, 2024, 16 (16)
  • [3] Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data
    Su, Yanjun
    Guo, Qinghua
    Xue, Baolin
    Hu, Tianyu
    Alvarez, Otto
    Tao, Shengli
    Fang, Jingyun
    REMOTE SENSING OF ENVIRONMENT, 2016, 173 : 187 - 199
  • [4] Mapping the vegetation and spatial dynamics of Sinharaja tropical rain forest incorporating NASA's GEDI spaceborne LiDAR data and multispectral satellite images
    Jayasekara, Dulan
    Dhananjani, Tharanga
    Mendis, Vinuri
    Jayawickrama, Harsha
    Prasad, Tharanga
    Gunarathna, Maleesha M.
    Gunarathna, Pethigelaye
    Mahaulpatha, Dharshani
    IFOREST-BIOGEOSCIENCES AND FORESTRY, 2025, 18 : 45 - 53
  • [5] ESTIMATING SPATIAL DISTRIBUTION OF RADIATION BELOW THE QINGHAI SPRUCE FOREST CANOPY IN QILIAN MOUNTAINS USING HEMISPHERICAL IMAGES AND AIRBORNE LIDAR DATA
    Peng, Huanhua
    Zhao, Chuanyan
    Feng, Zhaodong
    Tian, Fengxia
    Xu, Zhonglin
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1954 - 1957
  • [6] Estimating the spatial distribution, extent and potential lignocellulosic biomass supply of Trees Outside Forests in Baden-Wuerttemberg using airborne LiDAR and OpenStreetMap data
    Maack, Joachim
    Lingenfelder, Marcus
    Eilers, Christina
    Smaltschinski, Thomas
    Weinacker, Holger
    Jaeger, Dirk
    Koch, Barbara
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 58 : 118 - 125