Sharp constants in the Sobolev embedding theorem and a derivation of the Brezis-Gallouet interpolation inequality

被引:11
作者
Bartuccelli, Michele V. [1 ]
Gibbon, John D. [2 ]
机构
[1] Univ Surrey, Dept Math, Guildford GU2 7XH, Surrey, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
关键词
interpolation; partial differential equations; EQUATIONS;
D O I
10.1063/1.3638056
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Sharp estimates are obtained for the constants appearing in the Sobolev embedding theorem on the two-dimensional torus. Furthermore, a version of the Brezis-Gallouet interpolation inequality is obtained with an explicit but not necessarily optimal constant in the leading term, namely, the logarithmic term. The constants are expressed in terms of the Riemann zeta-function and the Dirichlet beta-series. (C) 2011 American Institute of Physics. [doi:10.1063/1.3638056]
引用
收藏
页数:9
相关论文
共 31 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]  
[Anonymous], 1997, INFINITE DIMENSIONAL
[3]  
[Anonymous], 2001, CAM T APP M
[4]  
BABIN A.V., 1989, ATTRACTORS OF EVOLUTION EQUATIONS
[5]  
Bartuccelli M. V., 2010, ASYMPTOTIC EXPANSION
[6]  
Bartuccelli M. V., 2011, EXPLICIT ESTIMATES G
[7]   Positivity and the attractor dimension in a fourth-order reaction-diffusion equation [J].
Bartuccelli, MV ;
Gourley, SA ;
Ilyin, AA .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2022) :1431-1446
[8]   Asymptotic estimates for Gagliardo-Nirenberg embedding constants [J].
Beckner, W .
POTENTIAL ANALYSIS, 2002, 17 (03) :253-266
[9]   SHARP SOBOLEV INEQUALITIES ON THE SPHERE AND THE MOSER-TRUDINGER INEQUALITY [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1993, 138 (01) :213-242
[10]   AN OPTIMAL LIMITING 2D SOBOLEV INEQUALITY [J].
Biryuk, Andrei .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (04) :1461-1470