Deformation of graded Poisson (Batalin-Vilkovisky) structures

被引:0
|
作者
Ikeda, Noriaki [1 ]
机构
[1] Ritsumeikan Univ, Dept Math Sci, Shiga 5258577, Japan
来源
POISSON GEOMETRY IN MATHEMATICS AND PHYSICS | 2008年 / 450卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Batalin-Vilkovisky formalism is a most general framework to construct consistent quantum field theories. Its mathematical structure is called a Batalin-Vilkovisky structure. First we explain the mathematical setting of a Batalin-Vilkovisky formalism. Next, we consider deformation theory of a Batalin-Vilkovisky structure. Especially, we consider deformation of topological sigma models in any dimension, which is closely related to many deformation theories in mathematics, including deformation from commutative geometry to noncommutative geometry. We obtain a series of new nontrivial topological sigma models and we find these models have the Batalin-Vilkovisky structures based on a series of new algebroids.
引用
收藏
页码:147 / 161
页数:15
相关论文
共 50 条
  • [1] Batalin-Vilkovisky algebra structures on (Co)Tor and Poisson bialgebroids
    Kowalzig, Niels
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (09) : 3781 - 3822
  • [2] Batalin-Vilkovisky structures on Ext and Tor
    Kowalzig, Niels
    Kraehmer, Ulrich
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 697 : 159 - 219
  • [3] Deformation theory and the Batalin-Vilkovisky master equation
    Stasheff, J
    DEFORMATION THEORY AND SYMPLECTIC GEOMETRY: PROCEEDINGS OF THE ASCONA MEETING, JUNE 1996, 1997, 20 : 271 - 284
  • [4] Isomorphisms between the Batalin-Vilkovisky antibracket and the Poisson bracket
    Barnich, G
    Henneaux, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (11) : 5273 - 5296
  • [5] BATALIN-VILKOVISKY ALGEBRA STRUCTURES ON HOCHSCHILD COHOMOLOGY
    Menichi, Luc
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2009, 137 (02): : 277 - 295
  • [6] Poisson cohomology, Koszul duality, and Batalin-Vilkovisky algebras
    Chen, Xiaojun
    Chen, Youming
    Eshmatov, Farkhod
    Yang, Song
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2021, 15 (03) : 889 - 918
  • [7] INTRODUCTION TO GRADED GEOMETRY, BATALIN-VILKOVISKY FORMALISM AND THEIR APPLICATIONS
    Qiu, Jian
    Zabzine, Maxim
    ARCHIVUM MATHEMATICUM, 2011, 47 (05): : 415 - 471
  • [8] ON THE GEOMETRY OF THE BATALIN-VILKOVISKY FORMALISM
    KHUDAVERDIAN, OM
    NERSESSIAN, AP
    MODERN PHYSICS LETTERS A, 1993, 8 (25) : 2377 - 2385
  • [9] GEOMETRY OF BATALIN-VILKOVISKY QUANTIZATION
    SCHWARZ, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (02) : 249 - 260
  • [10] Batalin-Vilkovisky structures on moduli spaces of flat connections
    Alekseev, Anton
    Naef, Florian
    Pulmann, Jan
    Severa, Pavol
    ADVANCES IN MATHEMATICS, 2024, 443