Machine learning recommends affordable new Ti alloy with bone-like modulus

被引:99
作者
Wu, Chun-Te [1 ,2 ]
Chang, Hsiao-Tzu [3 ]
Wu, Chien-Yu [4 ]
Chen, Shi-Wei [5 ]
Huang, Sih-Ying [1 ,2 ]
Huang, Mingxin [6 ]
Pan, Yeong-Tsuen [3 ]
Bradbury, Peta [7 ,8 ]
Chou, Joshua [7 ]
Yen, Hung-Wei [1 ,2 ]
机构
[1] Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei, Taiwan
[2] Natl Taiwan Univ, Adv Res Ctr Green Mat Sci & Technol, Taipei, Taiwan
[3] China Steel Corp, New Mat Res & Dev Dept, Kaohsiung, Taiwan
[4] Siemens Ltd, Digital Factory, Taipei, Taiwan
[5] Natl Synchrotron Radiat Res Ctr, Hsinchu, Taiwan
[6] Univ Hong Kong, Dept Mech Engn, Hong Kong, Peoples R China
[7] Univ Technol Sydney, Fac Engn & IT, Sch Biomed Engn, Sydney, NSW, Australia
[8] Woolcock Inst Med Res, Resp Technol Dept, Glebe, NSW, Australia
关键词
TITANIUM-ALLOYS; MECHANICAL-PROPERTIES; YOUNGS MODULUS; DEFORMATION-BEHAVIOR; TENSILE PROPERTIES; NEURAL-NETWORKS; PHASE; TEMPERATURE; DESIGN; ZR;
D O I
10.1016/j.mattod.2019.08.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A neural-network machine called "beta Low" enables a high-throughput recommendation for new 13 titanium alloys with Young's moduli lower than 50 GPa. The machine was trained by using a very general approach with small data from experiments. Its efficiency and accuracy break the barrier for alloy discovery. beta Low's best recommendation, Ti-12Nb-12Zr-12Sn (in wt.%) alloy, was unexpected in previous methods. This new alloy meets the requirements for bio-compatibility, low modulus, and low cost, and holds promise for orthopedic and prosthetic implants. Moreover, beta Low's prediction guides us to realize that the unexplored space of the chemical compositions of low-modulus biomedical titanium alloys is still large. Machine-learning-aided materials design accelerates the progress of materials development and reduces research costs in this work.
引用
收藏
页码:41 / 50
页数:10
相关论文
共 45 条
[1]   General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters [J].
Abdel-Hady, Mohamed ;
Hinoshita, Keita ;
Morinaga, Masahiko .
SCRIPTA MATERIALIA, 2006, 55 (05) :477-480
[2]   THERMO-CALC & DICTRA, computational tools for materials science [J].
Andersson, JO ;
Helander, T ;
Höglund, LH ;
Shi, PF ;
Sundman, B .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2002, 26 (02) :273-312
[3]  
[Anonymous], 2006, J PROSTHET DENT, DOI DOI 10.1016/J.PR0SDENT.2006.02.020
[4]  
[Anonymous], forensic identification and bone remodelling
[5]  
Araujo R. O., 2016, FRONT BIOENG BIOTECH, DOI [10.3389/conf.FBIOE.2016.01.02504., DOI 10.3389/CONF.FBIOE.2016.01.02504]
[6]  
Assad M., 2008, J BIOMED MATER RES A, V85A, P108
[7]   Neural networks in materials science [J].
Bhadeshia, HKDH .
ISIJ INTERNATIONAL, 1999, 39 (10) :966-979
[8]   Influence of Zr content on microstructure and mechanical properties of implant Ti-35Nb-4Sn-6Mo-xZr alloys [J].
Dai, Shi-juan ;
Wang, Yu ;
Chen, Feng ;
Yu, Xin-quan ;
Zhang, You-fa .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2013, 23 (05) :1299-1303
[9]   Serum cytokeratin 19 fragment in advanced lung cancer: could we eventually have a serum tumor marker? [J].
El Bastawisy, Ahmed ;
El Azzouny, Mahmoud ;
Mohammed, Gamal ;
Allah, Ahmad Awad ;
Behiry, Eman .
ECANCERMEDICALSCIENCE, 2014, 8
[10]   Biomedical applications of titanium and its alloys [J].
Elias, C. N. ;
Lima, J. H. C. ;
Valiev, R. ;
Meyers, M. A. .
JOM, 2008, 60 (03) :46-49