A novel intelligent weight decreasing firefly-particle filtering method for accurate state-of-charge estimation of lithium-ion batteries

被引:9
|
作者
Qiao, Jialu [1 ]
Wang, Shunli [1 ]
Yu, Chunmei [1 ]
Yang, Xiao [1 ]
Fernandez, Carlos [2 ]
机构
[1] Southwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Sichuan, Peoples R China
[2] Robert Gordon Univ, Sch Pharm & Life Sci, Aberdeen, Scotland
基金
中国国家自然科学基金;
关键词
intelligent weight decreasing firefly; lithium-ion battery; particle filtering; second-order RC equivalent circuit model; state-of-charge; JOINT ESTIMATION; KALMAN FILTER; PARAMETERS; MODEL;
D O I
10.1002/er.7596
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate state-of-charge estimation plays an extremely crucial role in battery management systems. To realize the real-time and precise state-of-charge estimation, an intelligent weight decreasing firefly-particle filtering algorithm is proposed. In this research, the second-order RC equivalent circuit model is established, and the parameters are identified online, and state-of-charge particles simulate the attraction behavior of fireflies in nature and approach the global optimal value to complete the particle optimization process. The linear weight decreasing strategy is introduced to avoid the algorithm falling into local optimization. The data of different complex conditions are used to verify the feasibility of the proposed algorithm; the results show that the root-mean-square error of intelligent weight decreasing firefly-particle filtering method when the initial SOC value is set to 1 under Hybrid Pulse Power Characterization and Beijing Bus Dynamic Stress Test condition can be controlled within 0.60% and 1.12%, respectively, which verifies that the proposed algorithm has high accuracy in state-of-charge estimation of lithium-ion batteries. The algorithm proposed in this article provides a theoretical basis for real-time state monitoring and security of battery management systems.
引用
收藏
页码:6613 / 6622
页数:10
相关论文
共 50 条
  • [21] Accurate State-of-Charge Estimation Approach for Lithium-Ion Batteries by Gated Recurrent Unit With Ensemble Optimizer
    Xiao, Bin
    Liu, Yonggui
    Xiao, Bing
    IEEE ACCESS, 2019, 7 : 54192 - 54202
  • [22] A novel state of charge estimation method for lithium-ion batteries based on bias compensation
    Ouyang, Tiancheng
    Xu, Peihang
    Chen, Jingxian
    Su, Zixiang
    Huang, Guicong
    Chen, Nan
    ENERGY, 2021, 226
  • [23] Robust and Accurate State-of-Charge Estimation for Lithium-ion Batteries Using Generalized Extended State Observer
    Song, Yu
    Liu, Weirong
    Li, Heng
    Zhou, Yanhui
    Huang, Zhiwu
    Jiang, Fu
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 2146 - 2151
  • [24] State-of-charge Estimation of Lithium-ion Batteries Using Extended Kalman Filter
    Rezoug, Mohamed Redha
    Taibi, Djamel
    Benaouadj, Mahdi
    2021 10TH INTERNATIONAL CONFERENCE ON POWER SCIENCE AND ENGINEERING (ICPSE 2021), 2021, : 98 - 103
  • [25] State-of-charge estimation method of lithium-ion batteries based on long-short term memory network
    Zhang, Qichang
    Liu, Bing
    Zhou, Fei
    Wang, Qianzhi
    Kong, Jizhou
    2018 INTERNATIONAL CONFERENCE ON AIR POLLUTION AND ENVIRONMENTAL ENGINEERING (APEE 2018), 2018, 208
  • [26] An improved particle swarm optimization-cubature Kalman particle filtering method for state-of-charge estimation of large-scale energy storage lithium-ion batteries
    Wang, Chao
    Wang, Shunli
    Zhang, Gexiang
    Takyi-Aninakwa, Paul
    Fernandez, Carlos
    Tao, Junjie
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [27] State-of-Charge Estimation of Lithium-Ion Batteries Subject to Random Sensor Data Unavailability: A Recursive Filtering Approach
    Chen, Hui
    Tian, Engang
    Wang, Licheng
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (05) : 5175 - 5184
  • [28] A Novel State-of-Charge Estimation Method of Lithium-Ion Batteries Combining the Grey Model and Genetic Algorithms
    Chen, Lin
    Wang, Zengzheng
    Lu, Zhiqiang
    Li, Junzi
    Ji, Bing
    Wei, Haiyan
    Pan, Haihong
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2018, 33 (10) : 8797 - 8807
  • [29] State-of-charge Estimation for Lithium-ion Battery using a Combined Method
    Li, Guidan
    Peng, Kai
    Li, Bin
    JOURNAL OF POWER ELECTRONICS, 2018, 18 (01) : 129 - 136
  • [30] State-of-Charge Estimation of Lithium-ion Batteries Using LSTM Deep Learning Method
    Dae-Won Chung
    Jae-Ha Ko
    Keun-Young Yoon
    Journal of Electrical Engineering & Technology, 2022, 17 : 1931 - 1945