Benchmarking the quantum approximate optimization algorithm

被引:91
作者
Willsch, Madita [1 ,2 ]
Willsch, Dennis [1 ,2 ]
Jin, Fengping [1 ]
De Raedt, Hans [3 ]
Michielsen, Kristel [1 ,2 ]
机构
[1] Forschungszentrum Julich, Inst Adv Simulat, Julich Supercomp Ctr, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, D-52056 Aachen, Germany
[3] Univ Groningen, Zernike Inst Adv Mat, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
关键词
Quantum computation; Quantum annealing; Optimization problems; QAOA;
D O I
10.1007/s11128-020-02692-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The performance of the quantum approximate optimization algorithm is evaluated by using three different measures: the probability of finding the ground state, the energy expectation value, and a ratio closely related to the approximation ratio. The set of problem instances studied consists of weighted MaxCut problems and 2-satisfiability problems. The Ising model representations of the latter possess unique ground states and highly degenerate first excited states. The quantum approximate optimization algorithm is executed on quantum computer simulators and on the IBM Q Experience. Additionally, data obtained from the D-Wave 2000Q quantum annealer are used for comparison, and it is found that the D-Wave machine outperforms the quantum approximate optimization algorithm executed on a simulator. The overall performance of the quantum approximate optimization algorithm is found to strongly depend on the problem instance.
引用
收藏
页数:24
相关论文
共 38 条
[1]   Adiabatic quantum computation [J].
Albash, Tameem ;
Lidar, Daniel A. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[2]  
Aleksandrowicz Gadi, 2019, METHOD PRODUCING HUM
[3]   Discrete optimization using quantum annealing on sparse Ising models [J].
Bian, Zhengbing ;
Chudak, Fabian ;
Israel, Robert ;
Lackey, Brad ;
Macready, William G. ;
Roy, Aidan .
FRONTIERS IN PHYSICS, 2014, 2 :1-10
[4]   Fast clique minor generation in Chimera qubit connectivity graphs [J].
Boothby, Tomas ;
King, Andrew D. ;
Roy, Aidan .
QUANTUM INFORMATION PROCESSING, 2016, 15 (01) :495-508
[5]   Proof of Adiabatic law [J].
Born, M. ;
Fock, V. .
ZEITSCHRIFT FUR PHYSIK, 1928, 51 (3-4) :165-180
[6]   Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor [J].
Bunyk, Paul I. ;
Hoskinson, Emile M. ;
Johnson, Mark W. ;
Tolkacheva, Elena ;
Altomare, Fabio ;
Berkley, Andrew J. ;
Harris, Richard ;
Hilton, Jeremy P. ;
Lanting, Trevor ;
Przybysz, Anthony J. ;
Whittaker, Jed .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2014, 24 (04)
[7]   Circuit design for multi-body interactions in superconducting quantum annealing systems with applications to a scalable architecture [J].
Chancellor, N. ;
Zohren, S. ;
Warburton, P. A. .
NPJ QUANTUM INFORMATION, 2017, 3
[8]   Robustness of adiabatic quantum computation [J].
Childs, AM ;
Farhi, E ;
Preskill, J .
PHYSICAL REVIEW A, 2002, 65 (01) :123221-1232210
[9]  
Crooks G. E., 2018, ARXIV181108419V1
[10]   Massively parallel quantum computer simulator, eleven years later [J].
De Raedt, Hans ;
Jin, Fengping ;
Willsch, Dennis ;
Willsch, Madita ;
Yoshioka, Naoki ;
Ito, Nobuyasu ;
Yuan, Shengjun ;
Michielsen, Kristel .
COMPUTER PHYSICS COMMUNICATIONS, 2019, 237 :47-61