A fingerprint chromatogram of a standardized Ginkgo biloba extract is developed on a monolithic silica column using a ternary gradient containing water, iso-propanol and tetrahydrofuran. For the detection, UV and evaporative light scattering (ELS) detectors are used, the latter allowing detection of the poor UV absorbing compounds as ginkgolides (A-C and J) and bilobalide in the extract. The complementary information between the UV and ELS fingerprint is evaluated. The ELS detector used in this study can operate in an impactor 'on' or 'off' mode. For each mode, the operating conditions such as the nebulizing gas flow rate, the drift tube temperature and the gain are optimized by use of three-level screening designs to obtain the best signal-to-noise (S/N) ratio in the final ELS fingerprint chromatogram. In both impactor modes, very similar S/N ratios are obtained for the nominal levels of the design. However, optimization of the operating conditions resulted, for both impactor modes, in a significant increase in S/N ratios compared to the initial evaluated conditions, obtained from the detector software. (c) 2005 Published by Elsevier B.V.