Efficient Global Structure Optimization with a Machine-Learned Surrogate Model

被引:112
作者
Bisbo, Malthe K. [1 ]
Hammer, Bjork [1 ]
机构
[1] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
关键词
CLUSTERS; GRAPHENE;
D O I
10.1103/PhysRevLett.124.086102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a scheme for global optimization with first-principles energy expressions of atomistic structure. While unfolding its search, the method actively learns a surrogate model of the potential energy landscape on which it performs a number of local relaxations (exploitation) and further structural searches (exploration). Assuming Gaussian processes, deploying two separate kernel widths to better capture rough features of the energy landscape while retaining a good resolution of local minima, an acquisition function is used to decide on which of the resulting structures is the more promising and should be treated at the first-principles level. The method is demonstrated to outperform by 2 orders of magnitude a well established first-principles based evolutionary algorithm in finding surface reconstructions. Finally, global optimization with first-principles energy expressions is utilized to identify initial stages of the edge oxidation and oxygen intercalation of graphene sheets on the Ir(111) surface.
引用
收藏
页数:6
相关论文
共 49 条
[11]   Machine learning based interatomic potential for amorphous carbon [J].
Deringer, Volker L. ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2017, 95 (09)
[12]   Nanoalloys: From theory to applications of alloy clusters and nanoparticles [J].
Ferrando, Riccardo ;
Jellinek, Julius ;
Johnston, Roy L. .
CHEMICAL REVIEWS, 2008, 108 (03) :845-910
[13]   Dedicated global optimization search for ground state silica nanoclusters:: (SiO2)N (N=6-12) [J].
Flikkema, E ;
Bromley, ST .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (28) :9638-9645
[14]   Oxygen Intercalation under Graphene on Ir(111): Energetics, Kinetics, and the Role of Graphene Edges [J].
Granas, Elin ;
Knudsen, Jan ;
Schroeder, Ulrike A. ;
Gerber, Timm ;
Busse, Carsten ;
Arman, Mohammad A. ;
Schulte, Karina ;
Andersen, Jesper N. ;
Michely, Thomas .
ACS NANO, 2012, 6 (11) :9951-9963
[15]   Accelerating high-throughput searches for new alloys with active learning of interatomic potentials [J].
Gubaev, Konstantin ;
Podryabinkin, Evgeny, V ;
Hart, Gus L. W. ;
Shapeev, Alexander, V .
COMPUTATIONAL MATERIALS SCIENCE, 2019, 156 :148-156
[16]   On-the-Fly Machine Learning of Atomic Potential in Density Functional Theory Structure Optimization [J].
Jacobsen, T. L. ;
Jorgensen, M. S. ;
Hammer, B. .
PHYSICAL REVIEW LETTERS, 2018, 120 (02)
[17]   On-the-fly machine learning force field generation: Application to melting points [J].
Jinnouchi, Ryosuke ;
Karsai, Ferenc ;
Kresse, Georg .
PHYSICAL REVIEW B, 2019, 100 (01)
[18]   Nudged elastic band calculations accelerated with Gaussian process regression [J].
Koistinen, Olli-Pekka ;
Dagbjartsdottir, Freyja B. ;
Asgeirsson, Vilhjalmur ;
Vehtari, Aki ;
Jonsson, Hannes .
JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (15)
[19]   Neural-network-enhanced evolutionary algorithm applied to supported metal nanoparticles [J].
Kolsbjerg, E. L. ;
Peterson, A. A. ;
Hammer, B. .
PHYSICAL REVIEW B, 2018, 97 (19)
[20]   An automated nudged elastic band method [J].
Kolsbjerg, Esben L. ;
Groves, Michael N. ;
Hammer, Bjork .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (09)