Efficient Global Structure Optimization with a Machine-Learned Surrogate Model

被引:112
作者
Bisbo, Malthe K. [1 ]
Hammer, Bjork [1 ]
机构
[1] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
关键词
CLUSTERS; GRAPHENE;
D O I
10.1103/PhysRevLett.124.086102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a scheme for global optimization with first-principles energy expressions of atomistic structure. While unfolding its search, the method actively learns a surrogate model of the potential energy landscape on which it performs a number of local relaxations (exploitation) and further structural searches (exploration). Assuming Gaussian processes, deploying two separate kernel widths to better capture rough features of the energy landscape while retaining a good resolution of local minima, an acquisition function is used to decide on which of the resulting structures is the more promising and should be treated at the first-principles level. The method is demonstrated to outperform by 2 orders of magnitude a well established first-principles based evolutionary algorithm in finding surface reconstructions. Finally, global optimization with first-principles energy expressions is utilized to identify initial stages of the edge oxidation and oxygen intercalation of graphene sheets on the Ir(111) surface.
引用
收藏
页数:6
相关论文
共 49 条
[1]   Ab initio calculation of carbon clusters.: II.: Relative stabilities of fullerene and nonfullerene C24 [J].
An, Wei ;
Shao, Nan ;
Bulusu, Satya ;
Zeng, X. C. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (08)
[2]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[3]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[4]   7X7 RECONSTRUCTION ON SI(111) RESOLVED IN REAL SPACE [J].
BINNIG, G ;
ROHRER, H ;
GERBER, C ;
WEIBEL, E .
PHYSICAL REVIEW LETTERS, 1983, 50 (02) :120-123
[5]   Machine Learning Force Fields: Construction, Validation, and Outlook [J].
Botu, V. ;
Batra, R. ;
Chapman, J. ;
Ramprasad, R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (01) :511-522
[6]   Machine learning of accurate energy-conserving molecular force fields [J].
Chmiela, Stefan ;
Tkatchenko, Alexandre ;
Sauceda, Huziel E. ;
Poltavsky, Igor ;
Schuett, Kristof T. ;
Mueller, Klaus-Robert .
SCIENCE ADVANCES, 2017, 3 (05)
[7]   Local Bayesian optimizer for atomic structures [J].
del Rio, Estefania Garijo ;
Mortensen, Jens Jorgen ;
Jacobsen, Karsten Wedel .
PHYSICAL REVIEW B, 2019, 100 (10)
[8]   Gaussian process regression for geometry optimization [J].
Denzel, Alexander ;
Kaestner, Johannes .
JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (09)
[9]   Data-driven learning and prediction of inorganic crystal structures [J].
Deringer, Volker L. ;
Proserpio, Davide M. ;
Csanyi, Gabor ;
Pickard, Chris J. .
FARADAY DISCUSSIONS, 2018, 211 :45-59
[10]   Data-Driven Learning of Total and Local Energies in Elemental Boron [J].
Deringer, Volker L. ;
Pickard, Chris J. ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2018, 120 (15)