Efficient Computation of Multiscale Entropy over Short Biomedical Time Series Based on Linear State-Space Models

被引:44
作者
Faes, Luca [1 ,2 ]
Porta, Alberto [3 ,4 ]
Javorka, Michal [5 ,6 ]
Nollo, Giandomenico [1 ,7 ]
机构
[1] Univ Trento, Dept Ind Engn, BIOtech, Trento, Italy
[2] Univ Palermo, Dipartimento Energia Ingn Informaz & Modelli Mate, Palermo, Italy
[3] Univ Milan, Dept Biomed Sci Hlth, Milan, Italy
[4] IRCCS Policlin San Donato, Dept Cardiothorac Vasc Anesthesia & Intens Care, Milan, Italy
[5] Comenius Univ, Jessenius Fac Med, Dept Physiol, Mala Hora 4C, Martin 03601, Slovakia
[6] Comenius Univ, Jessenius Fac Med, Biomed Ctr Martin, Mala Hora 4C, Martin 03601, Slovakia
[7] Bruno Kessler Fdn, Trento, Italy
关键词
HEART PERIOD VARIABILITY; APPROXIMATE ENTROPY; COMPLEXITY; HEALTHY; SIGNALS; SYSTEMS;
D O I
10.1155/2017/1768264
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The most common approach to assess the dynamical complexity of a time series across multiple temporal scales makes use of the multiscale entropy (MSE) and refined MSE (RMSE) measures. In spite of their popularity, MSE and RMSE lack an analytical framework allowing their calculation for known dynamic processes and cannot be reliably computed over short time series. To overcome these limitations, we propose a method to assess RMSE for autoregressive (AR) stochastic processes. The method makes use of linear state-space (SS) models to provide the multiscale parametric representation of an AR process observed at different time scales and exploits the SS parameters to quantify analytically the complexity of the process. The resulting linear MSE (LMSE) measure is first tested in simulations, both theoretically to relate the multiscale complexity of AR processes to their dynamical properties and over short process realizations to assess its computational reliability in comparison with RMSE. Then, it is applied to the time series of heart period, arterial pressure, and respiration measured for healthy subjects monitored in resting conditions and during physiological stress. This application to short-term cardiovascular variability documents that LMSE can describe better than RMSE the activity of physiological mechanisms producing biological oscillations at different temporal scales.
引用
收藏
页数:13
相关论文
共 47 条
[11]   Short-term cardiovascular oscillations in man: measuring and modelling the physiologies [J].
Cohen, MA ;
Taylor, JA .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 542 (03) :669-683
[12]   Multiscale entropy analysis of biological signals [J].
Costa, M ;
Goldberger, AL ;
Peng, CK .
PHYSICAL REVIEW E, 2005, 71 (02)
[13]   Multiscale entropy analysis of complex physiologic time series [J].
Costa, M ;
Goldberger, AL ;
Peng, CK .
PHYSICAL REVIEW LETTERS, 2002, 89 (06) :1-068102
[14]   The multiscale entropy: Guidelines for use and interpretation in brain signal analysis [J].
Courtiol, Julie ;
Perdikis, Dionysios ;
Petkoski, Spase ;
Mueller, Viktor ;
Huys, Raoul ;
Sleimen-Malkoun, Rita ;
Jirsa, Viktor K. .
JOURNAL OF NEUROSCIENCE METHODS, 2016, 273 :175-190
[15]  
Cover T.M., 1994, SIAM REV, V36, P509, DOI DOI 10.1137/1036124
[16]   Analysis of electroencephalograms in Alzheimer's disease patients with multiscale entropy [J].
Escudero, J. ;
Abasolo, D. ;
Hornero, R. ;
Espino, P. ;
Lopez, M. .
PHYSIOLOGICAL MEASUREMENT, 2006, 27 (11) :1091-1106
[17]   Multiscale Granger causality [J].
Faes, Luca ;
Nollo, Giandomenico ;
Stramaglia, Sebastiano ;
Marinazzo, Daniele .
PHYSICAL REVIEW E, 2017, 96 (04)
[18]   Multiscale Information Decomposition: Exact Computation for Multivariate Gaussian Processes [J].
Faes, Luca ;
Marinazzo, Daniele ;
Stramaglia, Sebastiano .
ENTROPY, 2017, 19 (08)
[19]   Information Decomposition in Multivariate Systems: Definitions, Implementation and Application to Cardiovascular Networks [J].
Faes, Luca ;
Porta, Alberto ;
Nollo, Giandomenico ;
Javorka, Michal .
ENTROPY, 2017, 19 (01)
[20]   Information Decomposition in Bivariate Systems: Theory and Application to Cardiorespiratory Dynamics [J].
Faes, Luca ;
Porta, Alberto ;
Nollo, Giandomenico .
ENTROPY, 2015, 17 (01) :277-303