Superconducting Qubits: Current State of Play

被引:1002
作者
Kjaergaard, Morten [1 ]
Schwartz, Mollie E. [2 ]
Braumuller, Jochen [1 ]
Krantz, Philip [3 ]
Wang, Joel I. -J. [1 ]
Gustavsson, Simon [1 ]
Oliver, William D. [1 ,2 ,4 ,5 ]
机构
[1] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[2] MIT, Lincoln Lab, Lexington, MA 02421 USA
[3] Chalmers Univ Technol, Microtechnol & Nanosci, SE-41296 Gothenburg, Sweden
[4] MIT, Dept Phys, Cambridge, MA 02139 USA
[5] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
来源
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 11, 2020 | 2020年 / 11卷
基金
美国国家科学基金会;
关键词
quantum computing; superconducting circuits; quantum algorithms; quantum simulation; quantum error correction; NISQ era; QUANTUM ERROR-CORRECTION; COMPUTATION; SUPREMACY; PHOTON; NOISE; INFORMATION; SIMULATION; CIRCUITS; DYNAMICS; CODE;
D O I
10.1146/annurev-conmatphys-031119-050605
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Superconducting qubits are leading candidates in the race to build a quantum computer capable of realizing computations beyond the reach of modern supercomputers. The superconducting qubit modality has been used to demonstrate prototype algorithms in the noisy intermediate-scale quantum (NISQ) technology era, in which non-error-corrected qubits are used to implement quantum simulations and quantum algorithms. With the recent demonstrations of multiple high-fidelity, two-qubit gates as well as operations on logical qubits in extensible superconducting qubit systems, this modality also holds promise for the longer-term goal of building largerscale error-corrected quantum computers. In this brief review, we discuss several of the recent experimental advances in qubit hardware, gate implementations, readout capabilities, early NISQ algorithm implementations, and quantum error correction using superconducting qubits. Although continued work on many aspects of this technology is certainly necessary, the pace of both conceptual and technical progress in recent years has been impressive, and here we hope to convey the excitement stemming from this progress.
引用
收藏
页码:369 / 395
页数:27
相关论文
共 217 条
[1]   FAULT-TOLERANT QUANTUM COMPUTATION WITH CONSTANT ERROR RATE [J].
Aharonov, Dorit ;
Ben-Or, Michael .
SIAM JOURNAL ON COMPUTING, 2008, 38 (04) :1207-1282
[2]   Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation [J].
Aharonov, Dorit ;
van Dam, Wim ;
Kempe, Julia ;
Landau, Zeph ;
Lloyd, Seth ;
Regev, Oded .
SIAM REVIEW, 2008, 50 (04) :755-787
[3]   Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits [J].
Andersen, Christian Kraglund ;
Remrm, Ants ;
Lazar, Stefania ;
Krinner, Sebastian ;
Heinsoo, Johannes ;
Besse, Jean-Claude ;
Gabureac, Mihai ;
Wallraff, Andreas ;
Eichler, Christopher .
NPJ QUANTUM INFORMATION, 2019, 5
[4]  
[Anonymous], 2019, ARXIV190306559
[5]  
[Anonymous], 2016, ARXIV161003507
[6]  
[Anonymous], 2016, IBM makes quantum computing available on IBM cloud to accelerate innovation
[7]  
[Anonymous], ARXIV190505720
[8]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[9]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[10]   On-demand quantum state transfer and entanglement between remote microwave cavity memories [J].
Axline, Christopher J. ;
Burkhart, Luke D. ;
Pfaff, Wolfgang ;
Zhang, Mengzhen ;
Chou, Kevin ;
Campagne-Ibarcq, Philippe ;
Reinhold, Philip ;
Frunzio, Luigi ;
Girvin, S. M. ;
Jiang, Liang ;
Devoret, M. H. ;
Schoelkopf, R. J. .
NATURE PHYSICS, 2018, 14 (07) :705-+