The structural maintenance of chromosomes (SMC) family of proteins in mammals

被引:27
作者
Ball, AR [1 ]
Yokomori, K [1 ]
机构
[1] Univ Calif Irvine, Coll Med, Dept Biol Chem, Irvine, CA 92697 USA
关键词
chromosome structure; cohesin; condensin; SMC proteins;
D O I
10.1023/A:1009287518015
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Structural maintenance of chromosomes (SMC) family proteins play critical roles in chromosome structural changes. SMC proteins are known to be involved in two major chromosome structural organization events required for mitotic segregation of chromosomes: mitotic chromosome condensation and sister chromatid cohesion. In eukaryotes, two separate sets of SMC heterodimers form the cores of two distinct multiprotein complexes termed 'condensin' and 'cohesin', each specialized for condensation or cohesion, respectively. It is clear that both condensin and cohesin are conserved in mammals, including humans. The mammalian complexes demonstrate dynamic changes in intracellular distribution in a cell cycle-dependent manner. At any point in the cell cycle, the intracellular localization of the majority of mammalian cohesin and condensin appears to be complementary. Cohesin is associated with chromatin in interphase, while condensin is largely cytoplasmic. Similarly, in mitosis, cohesin is mostly excluded from chromosomes while condensin is distinctly bound to them. Cell cycle-dependent targeting of the two complexes appears to play a major role in regulating their cell cycle-specific activities, and how this redistribution is controlled is an area of active research. Finally, there is evidence that SMC proteins may be involved in DNA recombination and repair. This review focuses on what we have learned about SMC family proteins in humans and other mammalian species in comparison to those in lower eukaryotes. The authors present their own views with regard to some of the major outstanding questions surrounding the nature and functions of the SMC family of proteins.
引用
收藏
页码:85 / 96
页数:12
相关论文
共 63 条
[1]   Structural maintenance of chromosomes protein C-terminal domains bind preferentially to DNA with secondary structure [J].
Akhmedov, AT ;
Frei, C ;
Tsai-Pflugfelder, M ;
Kemper, B ;
Gasser, SM ;
Jessberger, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (37) :24088-24094
[2]   Chromatid segregation at anaphase requires the barren product, a novel chromosome-associated protein that interacts with topoisomerase II [J].
Bhat, MA ;
Philp, AV ;
Glover, DM ;
Bellen, HJ .
CELL, 1996, 87 (06) :1103-1114
[3]   CLONING AND CHARACTERIZATION OF RAD21 AN ESSENTIAL GENE OF SCHIZOSACCHAROMYCES-POMBE INVOLVED IN DNA DOUBLE-STRAND-BREAK REPAIR [J].
BIRKENBIHL, RP ;
SUBRAMANI, S .
NUCLEIC ACIDS RESEARCH, 1992, 20 (24) :6605-6611
[4]   Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region [J].
Blat, Y ;
Kleckner, N .
CELL, 1999, 98 (02) :249-259
[5]   DPY-27 - A CHROMOSOME CONDENSATION PROTEIN HOMOLOG THAT REGULATES C. ELEGANS DOSAGE COMPENSATION THROUGH ASSOCIATION WITH THE X-CHROMOSOME [J].
CHUANG, PT ;
ALBERTSON, DG ;
MEYER, BJ .
CELL, 1994, 79 (03) :459-474
[6]   Sex-specific assembly of a dosage compensation complex on the nematode X chromosome [J].
Chuang, PT ;
Lieb, JD ;
Meyer, BJ .
SCIENCE, 1996, 274 (5293) :1736-1739
[7]   An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast [J].
Ciosk, R ;
Zachariae, W ;
Michaelis, C ;
Shevchenko, A ;
Mann, M ;
Nasmyth, K .
CELL, 1998, 93 (06) :1067-1076
[8]   SMCs in the world of chromosome biology - From prokaryotes to higher eukaryotes [J].
Cobbe, N ;
Heck, MMS .
JOURNAL OF STRUCTURAL BIOLOGY, 2000, 129 (2-3) :123-143
[9]   Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p [J].
CohenFix, O ;
Peters, JM ;
Kirschner, MW ;
Koshland, D .
GENES & DEVELOPMENT, 1996, 10 (24) :3081-3093
[10]   The A-kinase-anchoring protein AKAP95 is a multivalent protein with a key role in chromatin condensation at mitosis [J].
Collas, P ;
Le Guellec, K ;
Taskén, K .
JOURNAL OF CELL BIOLOGY, 1999, 147 (06) :1167-1179