Analysis of a dehydrin encoding gene and its phylogenetic utility in Helianthus

被引:8
作者
Giordani, T [1 ]
Natali, L [1 ]
Cavallini, A [1 ]
机构
[1] Dept Agr Plant Biol, Genet Sect, I-56124 Pisa, Italy
关键词
dehydrin; Helianthus; sunflower; indel; substitution; phylogenetic trees;
D O I
10.1007/s00122-003-1249-5
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Dehydrins are ubiquitous plant proteins, synthesized in late stages of plant embryo development and following any environmental stress involving dehydration. With the aim to study the evolution of such a stress-responsive gene within Helianthus and to test the possibility of using this gene for phylogenetic studies, fragments of the same dehydrin gene were isolated by PCR and sequenced in 16 wild Helianthus species or subspecies. All isolated sequences included the typical dehydrin domains (Y, S and K), a portion of 3'-UTR and an intron, inserted in the same position within the S domain-encoding region. The number of nucleotide substitutions (both synonymous and nonsynonymous) was calculated keeping separate the different gene regions, and differences occur even among coding domains, indicating that evolutionary constraints act differently on each region. The occurrence of indels and/or insertions was also observed. At the deduced protein level, the calculation of isoelectric point, molecular weight and the percentage of alpha-helix showed a diversification of biochemical properties of this protein between annual and perennial Helianthus species. Phylogenetic trees were built by the maximum-likelihood, maximum-parsimony, and neighbor-joining methods. In all cases the same topology was observed; perennial and annual species form a supported clade, and H. annuus was separated from the other annuals and from perennials. These data support the use of this stress-responsive gene to study the phylogeny of Helianthus.
引用
收藏
页码:316 / 325
页数:10
相关论文
共 44 条
[1]  
CAVALLINI A, 2002, PLANT GENOME BIODIVE, V1
[2]   Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower -: Accumulation of dehydrin transcripts correlates with tolerance [J].
Cellier, F ;
Conéjéro, G ;
Breitler, JC ;
Casse, F .
PLANT PHYSIOLOGY, 1998, 116 (01) :319-328
[3]   The barley (Hordeum vulgare L.) dehydrin multigene family:: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo [J].
Choi, DW ;
Zhu, B ;
Close, TJ .
THEORETICAL AND APPLIED GENETICS, 1999, 98 (08) :1234-1247
[4]   A CDNA-BASED COMPARISON OF DEHYDRATION-INDUCED PROTEINS (DEHYDRINS) IN BARLEY AND CORN [J].
CLOSE, TJ ;
KORTT, AA ;
CHANDLER, PM .
PLANT MOLECULAR BIOLOGY, 1989, 13 (01) :95-108
[5]   Dehydrins: A commonality in the response of plants to dehydration and low temperature [J].
Close, TJ .
PHYSIOLOGIA PLANTARUM, 1997, 100 (02) :291-296
[7]  
Doyle JJ, 1989, FOCUS, V12, P13
[8]   COMMON AMINO-ACID SEQUENCE DOMAINS AMONG THE LEA PROTEINS OF HIGHER-PLANTS [J].
DURE, L ;
CROUCH, M ;
HARADA, J ;
HO, THD ;
MUNDY, J ;
QUATRANO, R ;
THOMAS, T ;
SUNG, ZR .
PLANT MOLECULAR BIOLOGY, 1989, 12 (05) :475-486
[9]  
Felsenstein J., 1989, CLADISTICS, V5, P164, DOI DOI 10.1111/J.1096-0031.1989.TB00562.X
[10]   Patterns of genetic diversification within the Adh gene family in the grasses (Poaceae) [J].
Gaut, BS ;
Peek, AS ;
Morton, BR ;
Clegg, MT .
MOLECULAR BIOLOGY AND EVOLUTION, 1999, 16 (08) :1086-1097