Rigidity and Infinitesimal Deformability of Ricci Solitons

被引:5
作者
Kroencke, Klaus [1 ,2 ]
机构
[1] Univ Regensburg, Fak Math, Univ Str 31, D-93053 Regensburg, Germany
[2] Univ Potsdam, Inst Math, Neuen Palais 10, D-14469 Potsdam, Germany
关键词
Ricci solitons; Moduli space; Linearized equation; Integrability; EINSTEIN-METRICS;
D O I
10.1007/s12220-015-9608-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, an obstruction against the integrability of certain infinitesimal solitonic deformations is given. Using this obstruction, we show that the complex projective spaces of even complex dimension are rigid as Ricci solitons although they have infinitesimal solitonic deformations.
引用
收藏
页码:1795 / 1807
页数:13
相关论文
共 18 条
[1]  
[Anonymous], ARXIVMATH0211159
[2]  
[Anonymous], 2010, RECENT ADV GEOMETRIC
[3]  
[Anonymous], 1971, LECT NOTES MATH, DOI DOI 10.1007/BFB0064643
[4]  
Artin M., 1968, Inventiones Math, V5, P277, DOI DOI 10.1007/BF01389777
[5]  
Besse A.L, 2008, CLASSICS MATH
[6]  
Cao H.-S., 2004, ARXIV MATH 0404165
[7]   Linear stability of Perelman's ν-entropy on symmetric spaces of compact type [J].
Cao, Huai-Dong ;
He, Chenxu .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 709 :229-246
[8]   On second variation of Perelman's Ricci shrinker entropy [J].
Cao, Huai-Dong ;
Zhu, Meng .
MATHEMATISCHE ANNALEN, 2012, 353 (03) :747-763
[9]  
Chow B., 2007, Mathematical Surveys and Monographs, V135
[10]  
Ebin D.G., 1970, P S PURE MATH, P11, DOI DOI 10.1090/PSPUM/015/0267604