An Ensemble of Deep Learning-Based Multi-Model for ECG Heartbeats Arrhythmia Classification

被引:75
作者
Essa, Ehab [1 ,2 ]
Xie, Xianghua [1 ]
机构
[1] Swansea Univ, Dept Comp Sci, Swansea SA1 8EN, W Glam, Wales
[2] Mansoura Univ, Fac Comp & Informat, Dept Comp Sci, Mansoura 35516, Egypt
关键词
Electrocardiography; Heart beat; Feature extraction; Deep learning; Heart; Training; Data models; Electrocardiogram (ECG); CNN; LSTM; bagging; ensemble; deep learning; FEATURES; NETWORK;
D O I
10.1109/ACCESS.2021.3098986
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An automatic system for heart arrhythmia classification can perform a substantial role in managing and treating cardiovascular diseases. In this paper, a deep learning-based multi-model system is proposed for the classification of electrocardiogram (ECG) signals. Two different deep learning bagging models are introduced to classify heartbeats into different arrhythmias types. The first model (CNN-LSTM) is based on a combination of a convolutional neural network (CNN) and long short-term memory (LSTM) network to capture local features and temporal dynamics in the ECG data. The second model (RRHOS-LSTM) integrates some classical features, i.e. RR intervals and higher-order statistics (HOS), with LSTM model to effectively highlight abnormality heartbeats classes. We create a bagging model from the CNN-LSTM and RRHOS-LSTM networks by training each model on a different sub-sampling dataset to handle the high imbalance distribution of arrhythmias classes in the ECG data. Each model is also trained using a weighted loss function to provide high weight for not sufficiently represented classes. These models are then combined using a meta-classifier to form a strong coherent model. The meta-classifier is a feedforward fully connected neural network that takes the different predictions of bagging models as an input and combines them into a final prediction. The result of the meta-classifier is then verified by another CNN-LSTM model to decrease the false positive of the overall system. The experimental results are acquired by evaluating the proposed method on ECG data from the MIT-BIH arrhythmia database. The proposed method achieves an overall accuracy of 95.81% in the "subject-oriented" patient independent evaluation scheme. The averages of F1 score and positive predictive value are higher than all other methods by more than 3% and 8% respectively. The experimental results show the superiority of the proposed method for ECG heartbeats classification compared to many state-of-the-art methods.
引用
收藏
页码:103452 / 103464
页数:13
相关论文
共 41 条
[11]   PhysioBank, PhysioToolkit, and PhysioNet - Components of a new research resource for complex physiologic signals [J].
Goldberger, AL ;
Amaral, LAN ;
Glass, L ;
Hausdorff, JM ;
Ivanov, PC ;
Mark, RG ;
Mietus, JE ;
Moody, GB ;
Peng, CK ;
Stanley, HE .
CIRCULATION, 2000, 101 (23) :E215-E220
[12]   A Novel Connectionist System for Unconstrained Handwriting Recognition [J].
Graves, Alex ;
Liwicki, Marcus ;
Fernandez, Santiago ;
Bertolami, Roman ;
Bunke, Horst ;
Schmidhuber, Juergen .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (05) :855-868
[13]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[14]   Heart beat classification from single-lead ECG using the synchrosqueezing transform [J].
Herry, Christophe L. ;
Frasch, Martin ;
Seely, Andrew J. E. ;
Wu, Hau-tieng .
PHYSIOLOGICAL MEASUREMENT, 2017, 38 (02) :171-187
[15]   LSTM-Based Auto-Encoder Model for ECG Arrhythmias Classification [J].
Hou, Borui ;
Yang, Jianyong ;
Wang, Pu ;
Yan, Ruqiang .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (04) :1232-1240
[16]   Medical progress: Sudden death due to cardiac arrhythmias [J].
Huikuri, HV ;
Castellanos, A ;
Myerburg, RJ .
NEW ENGLAND JOURNAL OF MEDICINE, 2001, 345 (20) :1473-1482
[17]   A Generic and Robust System for Automated Patient-Specific Classification of ECG Signals [J].
Ince, Turker ;
Kiranyaz, Serkan ;
Gabbouj, Moncef .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2009, 56 (05) :1415-1426
[18]   A novel multi-module neural network system for imbalanced heartbeats classification [J].
Jiang J. ;
Zhang H. ;
Pi D. ;
Dai C. .
Expert Systems with Applications: X, 2019, 1
[19]   A Convolutional Neural Network for Modelling Sentences [J].
Kalchbrenner, Nal ;
Grefenstette, Edward ;
Blunsom, Phil .
PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, 2014, :655-665
[20]   Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks [J].
Kiranyaz, Serkan ;
Ince, Turker ;
Gabbouj, Moncef .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (03) :664-675