Zebrafish as a preclinical in vivo screening model for nanomedicines

被引:115
作者
Sieber, Sandro [1 ]
Grossen, Philip [1 ]
Bussmann, Jeroen [2 ]
Campbell, Frederick [2 ]
Kros, Alexander [2 ]
Witzigmann, Dominik [1 ,3 ]
Huwyler, Jorg [1 ]
机构
[1] Univ Basel, Dept Pharmaceut Sci, Div Pharmaceut Technol, Klingelbergstr 50, CH-4056 Basel, Switzerland
[2] Leiden Univ, Leiden Inst Chem, Dept Supramol & Biomat Chem, Leiden, Netherlands
[3] Univ British Columbia, Dept Biochem & Mol Biol, Hlth Sci Mall, Vancouver, BC, Canada
基金
瑞士国家科学基金会;
关键词
Nanomedicine; Preclinical screening; Drug development; Zebrafish; In vivo; Nanoparticle; Formulation optimization; Experimental parameters; BLOOD-BRAIN-BARRIER; MONONUCLEAR PHAGOCYTE SYSTEM; CAUSES GENOME INSTABILITY; DRUG-DELIVERY SYSTEMS; 3D CELL-CULTURE; DANIO-RERIO; PROTEIN CORONA; TRANSGENIC ZEBRAFISH; TRANSLATIONAL RESEARCH; MYCOBACTERIUM-MARINUM;
D O I
10.1016/j.addr.2019.01.001
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The interactions of nanomedicines with biological environments is heavily influenced by their physicochemical properties. Formulation design and optimization are therefore key steps towards successful nanomedicine development. Unfortunately, detailed assessment of nanomedicine formulations, at a macromolecular level, in rodents is severely limited by the restricted imaging possibilities within these animals. Moreover, rodent in vivo studies are time consuming and expensive, limiting the number of formulations that can be practically assessed in any one study. Consequently, screening and optimisation of nanomedicine formulations is most commonly performed in surrogate biological model systems, such as human-derived cell cultures. However, despite the time and cost advantages of classical in vitro models, these artificial systems fail to reflect and mimic the complex biological situation a nanomedicine will encounter in vivo. This has acutely hampered the selection of potentially successful nanomedicines for subsequent rodent in vivo studies. Recently, zebrafish have emerged as a promising in vivo model, within nanomedicine development pipelines, by offering opportunities to quickly screen nanomedicines under in vivo conditions and in a cost-effective manner so as to bridge the current gap between in vitro and rodent studies. In this review, we outline several advantageous features of the zebrafish model, such as biological conservation, imaging modalities, availability of genetic tools and disease models, as well as their various applications in nanomedicine development. Critical experimental parameters are discussed and the most beneficial applications of the zebrafish model, in the context of nanomedicine development, are highlighted. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:152 / 168
页数:17
相关论文
共 252 条
[1]   Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis [J].
Adams, D. ;
Gonzalez-Duarte, A. ;
O'Riordan, W. D. ;
Yang, C. -C. ;
Ueda, M. ;
Kristen, A. V. ;
Tournev, I. ;
Schmidt, H. H. ;
Coelho, T. ;
Berk, J. L. ;
Lin, K. -P. ;
Vita, G. ;
Attarian, S. ;
Plante-Bordeneuve, V. ;
Mezei, M. M. ;
Campistol, J. M. ;
Buades, J. ;
Brannagan, T. H., III ;
Kim, B. J. ;
Oh, J. ;
Parman, Y. ;
Sekijima, Y. ;
Hawkins, P. N. ;
Solomon, S. D. ;
Polydefkis, M. ;
Dyck, P. J. ;
Gandhi, P. J. ;
Goyal, S. ;
Chen, J. ;
Strahs, A. L. ;
Nochur, S. V. ;
Sweetser, M. T. ;
Garg, P. P. ;
Vaishnaw, A. K. ;
Gollob, J. A. ;
Suhr, O. B. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (01) :11-21
[2]   Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy [J].
Aggarwal, Parag ;
Hall, Jennifer B. ;
McLeland, Christopher B. ;
Dobrovolskaia, Marina A. ;
McNeil, Scott E. .
ADVANCED DRUG DELIVERY REVIEWS, 2009, 61 (06) :428-437
[3]   Controlled cellular uptake and drug efficacy of nanotherapeutics [J].
Ahn, Sungsook ;
Seo, Eunseok ;
Kim, Kihean ;
Lee, Sang Joon .
SCIENTIFIC REPORTS, 2013, 3
[4]   Zebrafish Embryos and Larvae: A New Generation of Disease Models and Drug Screens [J].
Ali, Shaukat ;
Champagne, Danielle L. ;
Spaink, Herman P. ;
Richardson, Michael K. .
BIRTH DEFECTS RESEARCH PART C-EMBRYO TODAY-REVIEWS, 2011, 93 (02) :115-133
[5]   Zebrafish as a cancer model system [J].
Amatruda, JF ;
Shepard, JL ;
Stern, HM ;
Zon, LI .
CANCER CELL, 2002, 1 (03) :229-231
[6]   Potential applications of enzymes immobilized on/in nano materials: A review [J].
Ansari, Shakeel Ahmed ;
Husain, Qayyum .
BIOTECHNOLOGY ADVANCES, 2012, 30 (03) :512-523
[7]  
Aschoff L., 1924, Ergb Inn Med. Kinderheilk, V26, P1, DOI [10.1007/978-3-642-90639-8_1, DOI 10.1007/978-3-642-90639-8_1]
[8]   Toxicity of silver nanoparticles in zebrafish models [J].
Asharani, P. V. ;
Wu, Yi Lian ;
Gong, Zhiyuan ;
Valiyaveettil, Suresh .
NANOTECHNOLOGY, 2008, 19 (25)
[9]   Dynamics of dual-fluorescent polymersomes with durable integrity in living cancer cells and zebrafish embryos [J].
Askes, Sven H. C. ;
Bossert, Nelli ;
Bussmann, Jeroen ;
Talens, Victorio Saez ;
Meijer, Michael S. ;
Kieltyka, Roxanne E. ;
Kros, Alexander ;
Bonnet, Sylvestre ;
Heinrich, Doris .
BIOMATERIALS, 2018, 168 :54-63
[10]   Fishing for cures: The alLURE of using zebrafish to develop precision oncology therapies [J].
Astone, Matteo ;
Dankert, Erin N. ;
Alam, Sk. Kayum ;
Hoeppner, Luke H. .
NPJ PRECISION ONCOLOGY, 2017, 1