A quasisecant method for minimizing nonsmooth functions

被引:24
作者
Bagirov, Adil M. [1 ]
Ganjehlou, Asef Nazari [1 ]
机构
[1] Univ Ballarat, Ctr Informat & Appl Optimizat, Sch Informat Technol & Math Sci, Ballarat, Vic 3353, Australia
关键词
nonsmooth optimization; nonconvex optimization; subdifferential; bundle method; UNCONSTRAINED MINIMIZATION; BUNDLE METHODS; OPTIMIZATION; ALGORITHM;
D O I
10.1080/10556780903151565
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present an algorithm to locally minimize nonsmooth, nonconvex functions. In order to find descent directions, the notion of quasisecants, introduced in this paper, is applied. We prove that the algorithm converges to Clarke stationary points. Numerical results are presented demonstrating the applicability of the proposed algorithm to a wide variety of nonsmooth, nonconvex optimization problems. We also compare the proposed algorithm with the bundle method using numerical results.
引用
收藏
页码:3 / 18
页数:16
相关论文
共 28 条
[1]  
[Anonymous], 1993, Convex Analysis and Minimization Algorithms
[2]   Discrete gradient method:: Derivative-free method for nonsmooth optimization [J].
Bagirov, A. M. ;
Karasoezen, B. ;
Sezer, M. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 137 (02) :317-334
[3]  
Bagirov A.M., 2003, TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, V11, P1
[4]  
Bagirov AM, 2006, J IND MANAG OPTIM, V2, P319
[5]   A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems [J].
Bagirov, AM ;
Yearwood, J .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 170 (02) :578-596
[6]   A method for minimization of quasidifferentiable functions [J].
Bagirov, AM .
OPTIMIZATION METHODS & SOFTWARE, 2002, 17 (01) :31-60
[7]  
BAGIROV AM, 2003, J MATH SCI, V115, P2567, DOI DOI 10.1023/A:1023227716953
[8]   A robust gradient sampling algorithm for nonsmooth, nonconvex optimization [J].
Burke, JV ;
Lewis, AS ;
Overton, ML .
SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (03) :751-779
[9]  
Clarke F.H, 1983, OPTIMIZATION NONSMOO
[10]  
Demyanov VF., 1995, Constructive nonsmooth analysis