A Quantized Hill's Dynamical System

被引:12
作者
Abouelmagd, Elbaz I. [1 ]
Kalantonis, Vassilis S. [2 ]
Perdiou, Angela E. [3 ]
机构
[1] Natl Res Inst Astron & Geophys NRIAG, Astron Dept, Celestial Mech & Space Dynam Res Grp CMSDRG, Cairo 11421, Egypt
[2] Univ Patras, Dept Elect & Comp Engn, Patras 26504, Greece
[3] Univ Patras, Dept Civil Engn, Patras 26504, Greece
关键词
RESTRICTED 3-BODY PROBLEM; NUMERICAL EXPLORATION; EQUILIBRIUM POINTS; PERIODIC-ORBITS; STABILITY; OBLATENESS; RADIATION; PRIMARIES;
D O I
10.1155/2021/9963761
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we present a modified version of Hill's dynamical system that is called the quantized Hill's three-body problem in the sense that the equations of motion for the classical Hill's problem are now derived under the effects of quantum corrections. To do so, the position variables and the parameters that correspond to the quantum corrections of the respective quantized three-body problem are scaled appropriately, and then by taking the limit when the parameter of mass ratio tends to zero, we obtain the relevant equations of motion for the spatial quantized Hill's problem. Furthermore, the Hamiltonian formula and related equations of motion are also derived.
引用
收藏
页数:7
相关论文
共 35 条
[1]   On Robe's restricted problem with a modified Newtonian potential [J].
Abouelmagd, Elbaz I. ;
Ansari, Abdullah A. ;
Shehata, M. H. .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (01)
[2]   Periodic solution of the nonlinear Sitnikov restricted three-body problem [J].
Abouelmagd, Elbaz I. ;
Garcia Guirao, Juan Luis ;
Pal, Ashok Kumar .
NEW ASTRONOMY, 2020, 75
[3]   Analysis of the spatial quantized three-body problem [J].
Alshaery, A. A. ;
Abouelmagd, Elbaz, I .
RESULTS IN PHYSICS, 2020, 17
[4]  
[Anonymous], 2017, Three body dynamics and its applications to exoplanets
[5]  
[Anonymous], 1967, THEORY ORBITS RESTRI, DOI DOI 10.1016/B978-0-12-395732-0.50001-5
[6]  
Battista E., 2016, EXTREME REGIMES QUAN
[7]   Quantum gravitational corrections to the nonrelativistic scattering potential of two masses [J].
Bjerrum-Bohr, NEJ ;
Donoghue, JF ;
Holstein, BR .
PHYSICAL REVIEW D, 2003, 67 (08)
[8]  
Dantas M.P., 2009, QUAL THEORY DYN SYST, V8, P45
[9]   LEADING QUANTUM CORRECTION TO THE NEWTONIAN POTENTIAL [J].
DONOGHUE, JF .
PHYSICAL REVIEW LETTERS, 1994, 72 (19) :2996-2999
[10]   THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS [J].
Fressin, Francois ;
Torres, Guillermo ;
Charbonneau, David ;
Bryson, Stephen T. ;
Christiansen, Jessie ;
Dressing, Courtney D. ;
Jenkins, Jon M. ;
Walkowicz, Lucianne M. ;
Batalha, Natalie M. .
ASTROPHYSICAL JOURNAL, 2013, 766 (02)