Revealing Grain-Boundary-Induced Degradation Mechanisms in Li-Rich Cathode Materials

被引:88
作者
Sharifi-Asl, Soroosh [1 ]
Yurkiv, Vitaliy [1 ]
Gutierrez, Arturo [2 ]
Cheng, Meng [1 ]
Balasubramanian, Mahalingam [3 ]
Mashayek, Farzad [1 ]
Croy, Jason [2 ]
Shahbazian-Yassar, Reza [1 ]
机构
[1] Univ Illinois, Mech & Ind Engn Dept, Chicago, IL 60607 USA
[2] Argonne Natl Lab, Chem Sci & Engn, Argonne, IL 60561 USA
[3] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60561 USA
基金
美国国家科学基金会;
关键词
Li-ion battery; Li-rich cathodes; layered oxide cathodes; structural degradation; grain boundary; STEM/EELS; LITHIUM-ION BATTERIES; GENERALIZED GRADIENT APPROXIMATION; POSITIVE ELECTRODE; THERMAL-STABILITY; LAYERED OXIDES; VOLTAGE FADE; HIGH-ENERGY; MN; NI; CO;
D O I
10.1021/acs.nanolett.9b04620
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite their high energy densities, Li- and Mn-rich, layered-layered, xLi(2)MnO(3)center dot(1 - x)LiTMO2 (TM = Ni, Mn, Co) (LMR-NMC) cathodes require further development in order to overcome issues related to bulk and surface instabilities such as Mn dissolution, impedance rise, and voltage fade. One promising strategy to modify LMR-NMC properties has been the incorporation of spinel-type, local domains to create "layered- layered-spinel" cathodes. HoweVer, precise control of local structure and composition, as well as subsequent characterization of such materials, is challenging and elucidating structure-property relationships is not trivial. Therefore, detailed studies of atomic structures within these materials are still critical to their development. Herein, aberration corrected-scanning transmission electron microscopy (AC-STEM) is utilized to study atomic structures, prior to and subsequent to electrochemical cycling, of LMR-NMC materials having integrated spinel-type components. The results demonstrate that strained grain boundaries with various atomic configurations, including spinel-type structures, can exist. These high energy boundaries appear to induce cracking and promote dissolution of Mn by increasing the contact surface area to electrolyte as well as migration of Ni during cycling, thereby accelerating performance degradation. These results present insights into the important role that local structures can play in the macroscopic degradation of the cathode structures and reiterate the complexity of how synthesis and composition affect structure-electrochemical property relationships of advanced cathode designs.
引用
收藏
页码:1208 / 1217
页数:10
相关论文
共 47 条
[1]   Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy [J].
Bak, Seong-Min ;
Hu, Enyuan ;
Zhou, Yongning ;
Yu, Xiqian ;
Senanayake, Sanjaya D. ;
Cho, Sung-Jin ;
Kim, Kwang-Bum ;
Chung, Kyung Yoon ;
Yang, Xiao-Qing ;
Nam, Kyung-Wan .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (24) :22594-22601
[2]   In situ X-ray absorption study of a layered manganese-chromium oxide-based cathode material [J].
Balasubramanian, M ;
McBreen, J ;
Davidson, IJ ;
Whitfield, PS ;
Kargina, I .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (02) :A176-A184
[3]   Long-Range and Local Structure in the Layered Oxide Li1.2Co0.4Mn0.4O2 [J].
Bareno, J. ;
Balasubramanian, M. ;
Kang, S. H. ;
Wen, J. G. ;
Lei, C. H. ;
Pol, S. V. ;
Petrov, I. ;
Abraham, D. P. .
CHEMISTRY OF MATERIALS, 2011, 23 (08) :2039-2050
[4]   The Origin of Capacity Fade in the Li2MnO3•LiMO2 (M = Li, Ni, Co, Mn) Microsphere Positive Electrode: An Operando Neutron Diffraction and Transmission X-ray Microscopy Study [J].
Chen, Chih-Jung ;
Pang, Wei Kon ;
Mori, Tatsuhiro ;
Peterson, Vanessa K. ;
Sharma, Neeraj ;
Lee, Po-Han ;
Wu, She-huang ;
Wang, Chun-Chieh ;
Song, Yen-Fang ;
Liu, Ru-Shi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (28) :8824-8833
[5]   Review of the US Department of Energy's "Deep Dive" Effort to Understand Voltage Fade in Li- and Mn-Rich Cathodes [J].
Croy, Jason R. ;
Balasubramanian, Mahalingam ;
Gallagher, Kevin G. ;
Burrell, Anthony K. .
ACCOUNTS OF CHEMICAL RESEARCH, 2015, 48 (11) :2813-2821
[6]   First-charge instabilities of layered-layered lithium-ion-battery materials [J].
Croy, Jason R. ;
Iddir, Hakim ;
Gallagher, Kevin ;
Johnson, Christopher S. ;
Benedek, Roy ;
Balasubramanian, Mahalingam .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (37) :24382-24391
[7]   Quantifying Hysteresis and Voltage Fade in xLi2MnO3•(1-x)LiMn0.5Ni0.5O2 Electrodes as a Function of Li2MnO3 Content [J].
Croy, Jason R. ;
Gallagher, Kevin G. ;
Balasubramanian, Mahalingam ;
Long, Brandon R. ;
Thackeray, Michael M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (03) :A318-A325
[8]   Examining Hysteresis in Composite xLi2MnO3•(1-x)LiMO2 Cathode Structures [J].
Croy, Jason R. ;
Gallagher, Kevin G. ;
Balasubramanian, Mahalingam ;
Chen, Zonghai ;
Ren, Yang ;
Kim, Donghan ;
Kang, Sun-Ho ;
Dees, Dennis W. ;
Thackeray, Michael M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (13) :6525-6536
[9]   Re-entrant Lithium Local Environments and Defect Driven Electrochemistry of Li- and Mn-Rich Li-Ion Battery Cathodes [J].
Dogan, Fulya ;
Long, Brandon R. ;
Croy, Jason R. ;
Gallagher, Kevin G. ;
Iddir, Hakim ;
Russell, John T. ;
Balasubramanian, Mahalingam ;
Key, Baris .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (06) :2328-2335
[10]   Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes [J].
Gallagher, Kevin G. ;
Croy, Jason R. ;
Balasubramanian, Mahalingam ;
Bettge, Martin ;
Abraham, Daniel P. ;
Burrell, Anthony K. ;
Thackeray, Michael M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 33 :96-98