Partial flag varieties and preprojective algebras

被引:76
作者
Geiss, Christof [1 ]
Leclerc, Bernard [2 ]
Schroeer, Jan [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[2] Univ Caen, LMNO, UMR 6139, F-14032 Caen, France
[3] Univ Bonn, Math Inst, D-53115 Bonn, Germany
关键词
flag variety; preprojective algebra; Frobenius category; rigid module; mutation; cluster algebra; semicanonical basis;
D O I
10.5802/aif.2371
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a preprojective algebra of type A, D, E, and let G be the corresponding semisimple simply connected complex algebraic group. We study rigid modules in subcategories Sub Q for Q an injective A-module, and we introduce a mutation operation between complete rigid modules in Sub Q. This yields cluster algebra structures on the coordinate rings of the partial flag varieties attached to G.
引用
收藏
页码:825 / 876
页数:52
相关论文
共 32 条
[1]   ALMOST SPLIT-SEQUENCES IN SUBCATEGORIES [J].
AUSLANDER, M ;
SMALO, SO .
JOURNAL OF ALGEBRA, 1981, 69 (02) :426-454
[2]  
Auslander M., 1992, London Mathematical Society Lecture Note Series, V168, P1
[3]  
Bautista R., 1979, P C RING THEOR ANTW, P385
[4]   Cluster algebras III: Upper bounds and double Bruhat cells [J].
Berenstein, A ;
Fomin, S ;
Zelevinsky, A .
DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) :1-52
[5]  
BOREL A, 1991, LINEAR ALGEBRAIC GRO
[6]  
BOURBAKI N, 1968, GROUPES ALGEBRES LIE, pCH4
[7]  
BUAN A, 2001, ARXIVMATHRT0701557
[8]   Tilting theory and cluster combinatorics [J].
Buan, Aslak Bakke ;
Marsh, Bethany Rose ;
Reineke, Markus ;
Reiten, Idun ;
Todorov, Gordana .
ADVANCES IN MATHEMATICS, 2006, 204 (02) :572-618
[9]   Double Bruhat cells and total positivity [J].
Fomin, S ;
Zelevinsky, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (02) :335-380
[10]   Cluster algebras II: Finite type classification [J].
Fomin, S ;
Zelevinsky, A .
INVENTIONES MATHEMATICAE, 2003, 154 (01) :63-121