Passivation of all-angle black surfaces for silicon solar cells

被引:60
作者
Rahman, Tasmiat [1 ]
Bonilla, Ruy S. [2 ]
Nawabjan, Amirjan [1 ]
Wilshaw, Peter R. [2 ]
Boden, Stuart A. [1 ]
机构
[1] Univ Southampton, Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
[2] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
基金
英国工程与自然科学研究理事会;
关键词
Nanowire; Black silicon; Surface passivation; Silicon solar cells; Dielectric thin films; Corona discharge; SI NANOWIRE ARRAYS; RECOMBINATION; EFFICIENCY; AL2O3;
D O I
10.1016/j.solmat.2016.10.044
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Optical losses at the front surface of a silicon solar cell have a significant impact on efficiency, and as such, efforts to reduce reflection are necessary. In this work, a method to fabricate and passivate nanowire-pyramid hybrid structures formed on a silicon surface via wet chemical processing is presented. These high surface area structures can be utilised on the front surface of back contact silicon solar cells to maximise light absorption therein. Hemispherical reflectivity under varying incident angles is measured to study the optical enhancement conferred by these structures. The significant reduction in reflectivity ( < 2%) under low incident angles is maintained at high angles by the hybrid textured surface compared to surfaces textured with nanowires or pyramids alone. Finite Difference Time Domain simulations of these dual micro-nanoscale surfaces under varying angles support the experimental results. In order to translate the optical benefit of these high surface area structures into improvements in device efficiency, they must also be well passivated. To this end, atomic layer deposition of alumina is used to reduce surface recombination velocities of these ultra-black silicon surfaces to below 30 cm/s. A decomposition of the passivation components is performed using capacitance voltage and Kelvin Probe measurements. Finally, device simulations show power conversion efficiencies exceeding 21% are possible when using these ultra-black Si surfaces for the front surface of back contact silicon solar cells.
引用
收藏
页码:444 / 453
页数:10
相关论文
共 42 条
[1]   Optimized light absorption in Si wire array solar cells [J].
Alaeian, Hadiseh ;
Atre, Ashwin C. ;
Dionne, Jennifer A. .
JOURNAL OF OPTICS, 2012, 14 (02)
[2]  
[Anonymous], 2012, Advanced Engineering Electromagnetics
[3]  
Baker-Finch S. C., 2010, PHOT SPEC C PVSC 35
[4]  
Bonilla R. S., 2016, SOLID STATE PHENOM, V242
[5]   Very low surface recombination velocity in n-type c-Si using extrinsic field effect passivation [J].
Bonilla, Ruy S. ;
Woodcock, Frederick ;
Wilshaw, Peter R. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (05)
[6]   A technique for field effect surface passivation for silicon solar cells [J].
Bonilla, Ruy S. ;
Wilshaw, Peter R. .
APPLIED PHYSICS LETTERS, 2014, 104 (23)
[7]   Synthesis of Silicon Nanowires and Nanofin Arrays Using Interference Lithography and Catalytic Etching [J].
Choi, W. K. ;
Liew, T. H. ;
Dawood, M. K. ;
Smith, Henry I. ;
Thompson, C. V. ;
Hong, M. H. .
NANO LETTERS, 2008, 8 (11) :3799-3802
[8]   Enhancement of radiative recombination in silicon via phonon localization and selection-rule breaking [J].
Cloutier, SG ;
Hsu, CH ;
Kossyrev, PA ;
Xu, J .
ADVANCED MATERIALS, 2006, 18 (07) :841-+
[9]  
Cuevas A., 1996, C REC 25 IEEEIEEE
[10]   Black silicon laser-doped selective emitter solar cell with 18.1% efficiency [J].
Davidsen, Rasmus Schmidt ;
Li, Hongzhao ;
To, Alexander ;
Wang, Xi ;
Han, Alex ;
An, Jack ;
Colwell, Jack ;
Chan, Catherine ;
Wenham, Alison ;
Schmidt, Michael Stenbaek ;
Boisen, Anja ;
Hansen, Ole ;
Wenham, Stuart ;
Barnett, Allen .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 144 :740-747