From classical infinite space-time CA to a hybrid CA model for natural sciences modeling

被引:7
作者
Calidonna, C. R. [1 ]
Naddeo, A. [2 ,3 ]
Trunfio, G. A. [4 ]
Di Gregorio, S. [5 ]
机构
[1] CNR ISAC, Area Ind, I-88046 Lamezia Terme, CZ, Italy
[2] Univ Salerno, CNISM, Unita Ric Salerno, I-84084 Fisciano, SA, Italy
[3] Univ Salerno, Dipartimento Fis ER Caianiello, I-84084 Fisciano, SA, Italy
[4] Univ Sassari, Fac Architettura, I-07041 Alghero, SS, Italy
[5] Univ Calabria, Dipartimento Matemat, I-87036 Arcavacata Di Rende, CS, Italy
关键词
Microscopic and macroscopic systems simulation; Cellular automata networks; Infinite and infinitesimal processes; CELLULAR-AUTOMATA;
D O I
10.1016/j.amc.2011.07.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Complex phenomena occurring in natural sciences are usually characterized by a non trivial interplay between microscopic and macroscopic dynamics, which can be successfully captured by the cellular automata (CA) computational paradigm [1]. In this paper we show that some approximation of the classical CA paradigm is needed in order to properly deal with complex dynamical systems. Real phenomena can be efficiently modeled and simulated by introducing a modified CA approach, the CANv2 [2]. In this way one takes into account multiscale dynamics, through approximate infinite and/or infinitesimal dynamical stages, by means of a hybrid network of standard CA components and global operators. The power of the CANv2 approach is fully exploited by discussing three examples borrowed from the realm of natural science: debris flows after a landslide [3-5], superconductive devices [2] and forest fires spread [6,7]. Advantages and limitations of our computational model explicitly arise when examples are discussed. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:8137 / 8150
页数:14
相关论文
共 13 条
[1]  
Calidonna C., 2000, P 3 ISHPC, P336
[2]  
Calidonna CR, 2008, INT J UNCONV COMPUT, V4, P315
[3]   Mapping applications of cellular automata into applications of cellular automata networks [J].
Calidonna, CR ;
Di Gregorio, S ;
Furnari, MM .
COMPUTER PHYSICS COMMUNICATIONS, 2002, 147 (1-2) :724-728
[4]  
CALIDONNA CR, 2001, P INT C SUP SORR IT, P419
[5]   A conformal field theory description of magnetic flux fractionalization in Josephson junction ladders [J].
Cristofano, G ;
Marotta, V ;
Naddeo, A ;
Niccoli, G .
EUROPEAN PHYSICAL JOURNAL B, 2006, 49 (01) :83-91
[6]   First simulations of the Sarno debris flows through Cellular Automata modelling [J].
D'Ambrosio, D ;
Di Gregorio, S ;
Iovine, G ;
Lupiano, V ;
Rongo, R ;
Spataro, W .
GEOMORPHOLOGY, 2003, 54 (1-2) :91-117
[7]  
D'Ambrosio D., 2006, P IEMS 3 BIENN M SUM
[8]  
Di Gregorio S, 1999, FUTURE GENER COMP SY, V16, P259, DOI 10.1016/S0167-739X(99)00051-5
[9]  
Luna Joel J., 1994, P 1993 WINT SIM C, P132
[10]   Predicting wildfire spreading through a hexagonal cellular automata model [J].
Trunfio, GA .
CELLULAR AUTOMATA, PROCEEDINGS, 2004, 3305 :385-394