Polypyrrole-Based Implantable Electroactive Pump for Controlled Drug Microinjection

被引:20
作者
Yan, Bingxi [1 ]
Li, Boyi [1 ]
Kunecke, Forest [1 ]
Gu, Zhen [3 ,4 ,5 ,6 ,7 ]
Guo, Liang [1 ,2 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Neurosci, Columbus, OH 43210 USA
[3] Univ North Carolina Chapel Hill, Joint Dept Biomed Engn, Raleigh, NC 27695 USA
[4] N Carolina State Univ, Raleigh, NC 27695 USA
[5] Univ N Carolina, UNC Eshelman Sch Pharm, Ctr Nanotechnol Drug Delivery, Chapel Hill, NC 27599 USA
[6] Univ N Carolina, UNC Eshelman Sch Pharm, Div Mol Pharmaceut, Chapel Hill, NC 27599 USA
[7] Univ N Carolina, Dept Med, Chapel Hill, NC 27599 USA
关键词
polypyrrole; electroactuator; implantable; controlled drug delivery; diabetes; ARTIFICIAL MUSCLES; FILMS; ACTUATORS; ELECTRODES; DELIVERY; STRAIN;
D O I
10.1021/acsami.5b04551
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Implantable devices for long-lasting controlled insulin microinjection are of great value to diabetic patients. To address this need, we develop a flexible electroactive pump based on a biocompatible polypyrrole composite film that comprises a polypyrrole matrix and a macromolecular dopant of polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone. Using phosphate-buffered saline as the electrolyte, this film demonstrates much higher electroactivity and reproducibility than conventional Cl--doped polypyrrole, making it an excellent actuator for driving an implantable pump. At a driving current density of 1 mA/cm(2), the pump demonstrates a consistent output capacity of 10.5 at 0.35 mu L/s over 20 cycles. This work paves the way for the development of an implantable electroactive pump to improve the quality of life of diabetics.
引用
收藏
页码:14563 / 14568
页数:6
相关论文
共 24 条
[1]  
Ansari R., 2006, E-J CHEM, V3, P186, DOI [DOI 10.1155/2006/860413, 10.1155/2006/860413]
[2]   Ionic electroactive polymer actuators based on nano-carbon electrodes [J].
Asaka, Kinji ;
Mukai, Ken ;
Sugino, Takushi ;
Kiyohara, Kenji .
POLYMER INTERNATIONAL, 2013, 62 (09) :1263-1270
[3]   A conducting polymer artificial muscle with 12% linear strain [J].
Bay, L ;
West, K ;
Sommer-Larsen, P ;
Skaarup, S ;
Benslimane, M .
ADVANCED MATERIALS, 2003, 15 (04) :310-313
[4]   ORGANIC ELECTROCHEMISTRY IN THE SOLID STATE-OVEROXIDATION OF POLYPYRROLE [J].
BECK, F ;
BRAUN, P ;
OBERST, M .
BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1987, 91 (09) :967-974
[5]  
Cochran E., 2008, Insulin, V3, P211
[6]  
Entezami AA, 2006, IRAN POLYM J, V15, P13
[7]   Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics [J].
George, PM ;
Lyckman, AW ;
LaVan, DA ;
Hegde, A ;
Leung, Y ;
Avasare, R ;
Testa, C ;
Alexander, PM ;
Langer, R ;
Sur, M .
BIOMATERIALS, 2005, 26 (17) :3511-3519
[8]   Stretchable Polymeric Multielectrode Array for Conformal Neural Interfacing [J].
Guo, Liang ;
Ma, Mingming ;
Zhang, Ning ;
Langer, Robert ;
Anderson, Daniel G. .
ADVANCED MATERIALS, 2014, 26 (09) :1427-1433
[9]   TFSI-doped polypyrrole actuator with 26% strain [J].
Hara, S ;
Zama, T ;
Takashima, W ;
Kaneto, K .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (10) :1516-1517
[10]   Electrochemical properties of porphyrin-doped polypyrrole films [J].
Johanson, U ;
Marandi, M ;
Sammelselg, V ;
Tamm, J .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2005, 575 (02) :267-273