ON THE REGULARITY OF THE COMPLEX MONGE-AMPERE EQUATIONS

被引:7
作者
He, Weiyong [1 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
The complex Mange-Ampere equation; regularity; DIRICHLET PROBLEM; VARIATIONAL PROPERTIES;
D O I
10.1090/S0002-9939-2011-11178-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We shall consider the regularity of solutions for the complex Monge-Ampere equations in C-n or a bounded domain. First we prove interior C-2 estimates of solutions in a bounded domain for the complex Monge-Ampere equations with the assumption of an L-P bound for Delta u, p > n(2), and of a Lipschitz condition on the right-hand side. Then we shall construct a family of Pogorelov-type examples for the complex Monge-Ampere equations. These examples give generalized entire solutions (as well as viscosity solutions) of the complex Monge-Ampere equation det(u(i (j) over bar)) = 1 in C-n.
引用
收藏
页码:1719 / 1727
页数:9
相关论文
共 17 条
[1]  
[Anonymous], 2015, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics
[2]  
[Anonymous], 1999, Math. Amer. Math. Soc. Providence RI
[3]  
[Anonymous], 1987, DMV SEMINAR
[4]   DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPERE EQUATION [J].
BEDFORD, E ;
TAYLOR, BA .
INVENTIONES MATHEMATICAE, 1976, 37 (01) :1-44
[5]   VARIATIONAL PROPERTIES OF THE COMPLEX MONGE-AMPERE EQUATION .2. INTRINSIC NORMS [J].
BEDFORD, E ;
TAYLOR, BA .
AMERICAN JOURNAL OF MATHEMATICS, 1979, 101 (05) :1131-1166
[6]   VARIATIONAL PROPERTIES OF COMPLEX MONGE-AMPERE EQUATION .1. DIRICHLET PRINCIPLE [J].
BEDFORD, E ;
TAYLOR, BA .
DUKE MATHEMATICAL JOURNAL, 1978, 45 (02) :375-403
[7]   Interior regularity of the complex Monge-Ampere equation in convex domains [J].
Blocki, Z .
DUKE MATHEMATICAL JOURNAL, 2000, 105 (01) :167-181
[8]  
Blocki Z., 2003, B AUSTR MATH SOC, V68, P81
[9]   A local regularity of the complex Monge-Ampere equation [J].
Blocki, Zbigniew ;
Dinew, Slawomir .
MATHEMATISCHE ANNALEN, 2011, 351 (02) :411-416
[10]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .2. COMPLEX MONGE-AMPERE, AND UNIFORMLY ELLIPTIC, EQUATIONS [J].
CAFFARELLI, L ;
KOHN, JJ ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (02) :209-252