On the Neumann problem for fractional semilinear elliptic equations arising from Keller-Segel model

被引:2
作者
Jin, Zhen-Feng [1 ]
Sun, Hong-Rui [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional Laplacian; Neumann boundary condition; Pohozaev-type identity; PARABOLIC-PARABOLIC TYPE; LEAST-ENERGY SOLUTIONS; SYSTEM; CHEMOTAXIS; EXISTENCE;
D O I
10.1002/mma.8277
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following fractional semilinear Neumann problem arising from Keller-Segel model: {(-epsilon Delta)(1/2)u + u = h(u) in Omega, partial derivative(nu u) = 0 on partial derivative Omega, where Omega subset of R-n (n >= 2) is a smooth bounded domain and nu is the outward unit normal to partial derivative Omega. First, under the superlinear and subcritical growth assumptions on h, we prove that there exists at least one positive nonconstant solution u(epsilon). for small epsilon > 0 and the family of solutions {u(epsilon)}(epsilon>0) is uniformly bounded. Moreover, we build a Pohozaev-type identity for the (epsilon-) Neumann harmonic extension of the following problem {(-epsilon Delta)(1/2)u = g(u) in Omega, partial derivative(nu u) = 0 on partial derivative Omega, where g is a C-1 function such that g(0) = 0. As a direct application of this identity, when g satisfies (n - 1)tg(t) - 2nG(t) >= 0, where G(t) = integral(t)(0)g(s)ds, we deduce the nonexistence of weak bounded solution in star-shaped domains.
引用
收藏
页码:7780 / 7793
页数:14
相关论文
共 40 条
[11]  
Cont R., 2004, Financial Modelling With Jump Processes
[12]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[13]   The fractional Keller-Segel model [J].
Escudero, Carlos .
NONLINEARITY, 2006, 19 (12) :2909-2918
[14]  
Gilbarg D., 2015, ELLIPTIC PARTIAL DIF, V224
[15]   Solutions for Fractional Schrodinger Equation Involving Critical Exponent via Local Pohozaev Identities [J].
Guo, Yuxia ;
Liu, Ting ;
Nie, Jianjun .
ADVANCED NONLINEAR STUDIES, 2020, 20 (01) :185-211
[16]   Construction of solutions for the polyharmonic equation via local Pohozaev identities [J].
Guo, Yuxia ;
Liu, Ting ;
Nie, Jianjun .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (04)
[17]   Environmental context explains Levy and Brownian movement patterns of marine predators [J].
Humphries, Nicolas E. ;
Queiroz, Nuno ;
Dyer, Jennifer R. M. ;
Pade, Nicolas G. ;
Musyl, Michael K. ;
Schaefer, Kurt M. ;
Fuller, Daniel W. ;
Brunnschweiler, Juerg M. ;
Doyle, Thomas K. ;
Houghton, Jonathan D. R. ;
Hays, Graeme C. ;
Jones, Catherine S. ;
Noble, Leslie R. ;
Wearmouth, Victoria J. ;
Southall, Emily J. ;
Sims, David W. .
NATURE, 2010, 465 (7301) :1066-1069
[18]   ON EXPLOSIONS OF SOLUTIONS TO A SYSTEM OF PARTIAL-DIFFERENTIAL EQUATIONS MODELING CHEMOTAXIS [J].
JAGER, W ;
LUCKHAUS, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 329 (02) :819-824
[19]   On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN [J].
Jeanjean, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :787-809
[20]   INITIATION OF SLIME MOLD AGGREGATION VIEWED AS AN INSTABILITY [J].
KELLER, EF ;
SEGEL, LA .
JOURNAL OF THEORETICAL BIOLOGY, 1970, 26 (03) :399-&