On the Neumann problem for fractional semilinear elliptic equations arising from Keller-Segel model

被引:2
作者
Jin, Zhen-Feng [1 ]
Sun, Hong-Rui [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional Laplacian; Neumann boundary condition; Pohozaev-type identity; PARABOLIC-PARABOLIC TYPE; LEAST-ENERGY SOLUTIONS; SYSTEM; CHEMOTAXIS; EXISTENCE;
D O I
10.1002/mma.8277
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following fractional semilinear Neumann problem arising from Keller-Segel model: {(-epsilon Delta)(1/2)u + u = h(u) in Omega, partial derivative(nu u) = 0 on partial derivative Omega, where Omega subset of R-n (n >= 2) is a smooth bounded domain and nu is the outward unit normal to partial derivative Omega. First, under the superlinear and subcritical growth assumptions on h, we prove that there exists at least one positive nonconstant solution u(epsilon). for small epsilon > 0 and the family of solutions {u(epsilon)}(epsilon>0) is uniformly bounded. Moreover, we build a Pohozaev-type identity for the (epsilon-) Neumann harmonic extension of the following problem {(-epsilon Delta)(1/2)u = g(u) in Omega, partial derivative(nu u) = 0 on partial derivative Omega, where g is a C-1 function such that g(0) = 0. As a direct application of this identity, when g satisfies (n - 1)tg(t) - 2nG(t) >= 0, where G(t) = integral(t)(0)g(s)ds, we deduce the nonexistence of weak bounded solution in star-shaped domains.
引用
收藏
页码:7780 / 7793
页数:14
相关论文
共 40 条
[1]   Lotka-Volterra models with fractional diffusion [J].
Alves, Michele O. ;
Pimenta, Marcos T. O. ;
Suarez, Antonio .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2017, 147 (03) :505-528
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
[Anonymous], 1987, Analyse fonctionnelle
[4]  
[Anonymous], 1997, Minimax Theorems
[5]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[6]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[7]   Fractional elliptic equations, Caccioppoli estimates and regularity [J].
Caffarelli, Luis A. ;
Stinga, Pablo Raul .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (03) :767-807
[8]   Blow-up, Concentration Phenomenon and Global Existence for the Keller-Segel Model in High Dimension [J].
Calvez, Vincent ;
Corrias, Lucilla ;
Ebde, Mohamed Abderrahman .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (04) :561-584
[9]  
[曹道民 Cao Daomin], 2016, [中国科学. 数学, Scientia Sinica Mathematica], V46, P1649
[10]   Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity [J].
Chang, X. ;
Wang, Z-Q .
NONLINEARITY, 2013, 26 (02) :479-494