Variants of the Entropy Power Inequality

被引:26
作者
Bobkov, Sergey G. [1 ]
Marsiglietti, Arnaud [2 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
Entropy power inequality; Renyi entropy; SIMPLE PROOF; CONCAVITY; MONOTONICITY;
D O I
10.1109/TIT.2017.2764487
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An extension of the entropy power inequality to the form N-r(alpha) (X + Y) >= N-r(alpha) (X) + N-r(alpha) (Y) with arbitrary independent summands X and Y in R-n is obtained for the Renyi entropy and powers alpha >= (r + 1)/2.
引用
收藏
页码:7747 / 7752
页数:6
相关论文
共 31 条
[1]   Solution of Shannon's problem on the monotonicity of entropy [J].
Artstein, S ;
Ball, KM ;
Barthe, F ;
Naor, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (04) :975-982
[2]   ENTROPY AND THE CENTRAL-LIMIT-THEOREM [J].
BARRON, AR .
ANNALS OF PROBABILITY, 1986, 14 (01) :336-342
[3]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[4]  
Beckner W, 1998, INT MATH RES NOTICES, V1998, P67
[5]  
Bobkov S. G., 2017, TECH REP
[6]   Bounds on the Maximum of the Density for Sums of Independent Random Variables [J].
Bobkov S.G. ;
Chistyakov G.P. .
Journal of Mathematical Sciences, 2014, 199 (2) :100-106
[7]   Entropy Power Inequality for the Renyi Entropy [J].
Bobkov, Sergey G. ;
Chistyakov, Gennadiy P. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (02) :708-714
[8]   RATE OF CONVERGENCE AND EDGEWORTH-TYPE EXPANSION IN THE ENTROPIC CENTRAL LIMIT THEOREM [J].
Bobkov, Sergey G. ;
Chistyakov, Gennadiy P. ;
Goetze, Friedrich .
ANNALS OF PROBABILITY, 2013, 41 (04) :2479-2512
[9]   BEST CONSTANTS IN YOUNGS INEQUALITY, ITS CONVERSE, AND ITS GENERALIZATION TO MORE THAN 3 FUNCTIONS [J].
BRASCAMP, HJ ;
LIEB, EH .
ADVANCES IN MATHEMATICS, 1976, 20 (02) :151-173
[10]  
Carlen EA., 1993, Internat. Math. Res. Not, V7, P213, DOI [10.1155/S1073792893000224, DOI 10.1155/S1073792893000224]