Tuning Electron Transport in Graphene-Based Field-Effect Devices using Block Co-polymers

被引:25
作者
Guo, Shirui [3 ]
Ghazinejad, Maziar [1 ]
Qin, Xiangdong [3 ]
Sun, Huaxing [3 ]
Wang, Wei [1 ]
Zaera, Francisco [3 ]
Ozkan, Mihrimah [2 ]
Ozkan, Cengiz S. [1 ]
机构
[1] Univ Calif Riverside, Dept Mech Engn, Mat Sci & Engn Program, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA
[3] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
graphene; field-effect transistors; polymer materials; Dirac point shift; fluorine doping; tunable electronic properties; DOPED GRAPHENE; FILMS; FLUORINATION; TRANSISTORS; DEPOSITION;
D O I
10.1002/smll.201101611
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene possesses many remarkable properties and shows promise as the future material for building nanoelectronic devices. For many applications such as graphene-based field-effect transistors (GFET), it is essential to control or modulate the electronic properties by means of doping. Using spatially controlled plasma-assisted CF4 doping, the Dirac point shift of a GFET covered with a polycrystalline PS-P4VP block co-polymer (BCP) [poly(styrene-b-4-vinylpyridine)] having a cylindrical morphology can be controlled. By changing the chemical component of the microdomain (P4VP) and the major domain (PS) with the CF4 plasma technique, the doping effect is demonstrated. This work provides a methodology where the Dirac point can be controlled via the different sensitivities of the PS and P4VP components of the BCP subjected to plasma processing.
引用
收藏
页码:1073 / 1080
页数:8
相关论文
共 44 条
[31]   Controlling the electronic structure of bilayer graphene [J].
Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, United States ;
不详 ;
不详 .
Science, 2006, 5789 (951-954) :951-954
[32]   Self-assembly of poly(ethylene glycol)-based block copolymers for biomedical applications [J].
Otsuka, H ;
Nagasaki, Y ;
Kataoka, K .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2001, 6 (01) :3-10
[33]   Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene [J].
Panchokarla, L. S. ;
Subrahmanyam, K. S. ;
Saha, S. K. ;
Govindaraj, Achutharao ;
Krishnamurthy, H. R. ;
Waghmare, U. V. ;
Rao, C. N. R. .
ADVANCED MATERIALS, 2009, 21 (46) :4726-+
[34]   From nanorings to nanodots by patterning with block copolymers [J].
Park, Soojin ;
Wang, Jia-Yu ;
Kim, Bokyung ;
Russell, Thomas P. .
NANO LETTERS, 2008, 8 (06) :1667-1672
[35]   Detection of individual gas molecules adsorbed on graphene [J].
Schedin, F. ;
Geim, A. K. ;
Morozov, S. V. ;
Hill, E. W. ;
Blake, P. ;
Katsnelson, M. I. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (09) :652-655
[36]   Fluorination of carbon blacks:: an X-ray photoelectron spectroscopy study IV.: Reactivity of different carbon blacks in CF4 radiofrequency plasma [J].
Shirasaki, T ;
Moguet, F ;
Lozano, L ;
Tressaud, A ;
Nanse, G ;
Papirer, E .
CARBON, 1999, 37 (12) :1891-1900
[37]   Surface chemistry in the atomic layer deposition of TiN films from TiCl4 and ammonia [J].
Tiznado, Hugo ;
Zaera, Francisco .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (27) :13491-13498
[38]   Gate-variable optical transitions in graphene [J].
Wang, Feng ;
Zhang, Yuanbo ;
Tian, Chuanshan ;
Girit, Caglar ;
Zettl, Alex ;
Crommie, Michael ;
Shen, Y. Ron .
SCIENCE, 2008, 320 (5873) :206-209
[39]   N-Doping of Graphene Through Electrothermal Reactions with Ammonia [J].
Wang, Xinran ;
Li, Xiaolin ;
Zhang, Li ;
Yoon, Youngki ;
Weber, Peter K. ;
Wang, Hailiang ;
Guo, Jing ;
Dai, Hongjie .
SCIENCE, 2009, 324 (5928) :768-771
[40]   Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties [J].
Wei, Dacheng ;
Liu, Yunqi ;
Wang, Yu ;
Zhang, Hongliang ;
Huang, Liping ;
Yu, Gui .
NANO LETTERS, 2009, 9 (05) :1752-1758