JOINT CELL SEGMENTATION AND TRACKING USING CELL PROPOSALS

被引:21
作者
Akram, Saad Ullah [1 ,2 ]
Kannala, Juho [5 ]
Eklund, Lauri [2 ,3 ,4 ]
Heikkila, Janne [1 ]
机构
[1] Univ Oulu, Ctr Machine Vis Res, SF-90100 Oulu, Finland
[2] Univ Oulu, Bioctr Oulu, SF-90100 Oulu, Finland
[3] Univ Oulu, Oulu Ctr Cell Matrix Res, SF-90100 Oulu, Finland
[4] Univ Oulu, Fac Biochem & Mol Med, SF-90100 Oulu, Finland
[5] Aalto Univ, Dept Comp Sci, Espoo, Finland
来源
2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2016年
关键词
joint segmentation and tracking; cell tracking; cell segmentation; cell proposals;
D O I
10.1109/ISBI.2016.7493415
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Time-lapse microscopy imaging has advanced rapidly in last few decades and is producing large volume of data in cell and developmental biology. This has increased the importance of automated analyses, which depend heavily on cell segmentation and tracking as these are the initial stages when computing most biologically important cell properties. In this paper, we propose a novel joint cell segmentation and tracking method for fluorescence microscopy sequences, which generates a large set of cell proposals, creates a graph representing different cell events and then iteratively finds the most probable path within this graph providing cell segmentations and tracks. We evaluate our method on three datasets from ISBI Cell Tracking Challenge and show that our greedy nonoptimal joint solution results in improved performance compared with state of the art methods.
引用
收藏
页码:920 / 924
页数:5
相关论文
共 13 条
[1]  
Akram S. U., 2014, AS C COMP VIS ACCV
[2]  
[Anonymous], ARXIV150105499
[3]  
[Anonymous], BIOINFORMATICS
[4]  
Arteta C, 2012, INT C MED IM COMP CO
[5]  
Dzyubachyk O., 2010, IEEE T MED IMAGING
[6]  
Jug F., 2014, BAYES GRAPHICAL MOD
[7]  
Kanade T., 2011, IEEE WORKSH APPL COM
[8]  
Kong H., 2013, IEEE T CYBERNETICS, P1
[9]  
Lou X., 2014, IEEE T MED IMAGING
[10]  
Magnusson K. E. G., 2012, IEEE INT S BIOM IM I