Longtime behavior of multidimensional wave equation with local Kelvin-Voigt damping

被引:3
|
作者
Han, Zhong-Jie [1 ]
Yu, Kai [2 ]
Zhang, Qiong [3 ]
机构
[1] Tianjin Univ, Sch Math, Tianjin Key Lab BIIT, Tianjin 300354, Peoples R China
[2] Nankai Univ, Chern Inst Math, Tianjin, Peoples R China
[3] Beijing Inst Technol, Sch Math, Beijing Key Lab MCAACI, Beijing, Peoples R China
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2022年 / 102卷 / 06期
基金
中国国家自然科学基金;
关键词
EXPONENTIAL STABILITY; ELASTIC-SYSTEMS; STABILIZATION; REGULARITY; DECAY;
D O I
10.1002/zamm.202000275
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the longtime behavior of a coupled multidimensional elastic-viscoelastic waves system is considered. This model consists of an elastic wave domain and an viscoelastic wave domain, connecting by a common interface. The dissipative damping is produced in the viscoelastic wave via the boundary connection. By the resolvent estimate together with microlocal analysis argument, we show that the corresponding semigroup is polynomially stable with decay rate t(-1) under certain conditions.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Stabilization of a coupled wave equation with one localized nonregular fractional Kelvin-Voigt damping with nonsmooth coefficients
    Zhang, Li
    Liu, Wenjun
    An, Yanning
    Cao, Xinxin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) : 9119 - 9146
  • [32] Stability results for an elastic-viscoelastic wave equation with localized Kelvin-Voigt damping and with an internal or boundary time delay
    Ghader, Mouhammad
    Nasser, Rayan
    Wehbe, Ali
    ASYMPTOTIC ANALYSIS, 2021, 125 (1-2) : 1 - 57
  • [33] Thermal Timoshenko beam system with suspenders and Kelvin-Voigt damping
    Mukiawa, Soh Edwin
    Khan, Yasir
    Al Sulaimani, Hamdan
    Omaba, McSylvester Ejighikeme
    Enyi, Cyril Dennis
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
  • [34] Stability for coupled waves with locally disturbed Kelvin-Voigt damping
    Hassine, Fathi
    Souayeh, Nadia
    SEMIGROUP FORUM, 2021, 102 (01) : 134 - 159
  • [35] The effect of Kelvin-Voigt damping on the stability of Timoshenko laminated beams system with history
    Cabanillas, Victor R.
    Mendez, Teofanes Quispe
    Barrientos, Carlos Quicano
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (08) : 2973 - 2996
  • [36] A transmission problem for the Timoshenko system with one local Kelvin-Voigt damping and non-smooth coefficient at the interface
    Wehbe, Ali
    Ghader, Mouhammad
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (08)
  • [37] Frictional versus Kelvin-Voigt damping in a transmission problem
    Oquendo, Higidio Portillo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7026 - 7032
  • [38] Blow up of solution for the Kelvin-Voigt type wave equation with Balakrishnan-Taylor damping and acoustic boundary
    Sarra, Toualbia
    Zarai, Abderrahmane
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (42): : 788 - 797
  • [39] A Numerical Method of the Euler-Bernoulli Beam with Optimal Local Kelvin-Voigt Damping
    Yu, Xin
    Ren, Zhigang
    Zhang, Qian
    Xu, Chao
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [40] Stability results of locally coupled wave equations with local Kelvin-Voigt damping: Cases when the supports of damping and coupling coefficients are disjoint
    Akil, Mohammad
    Badawi, Haidar
    Nicaise, Serge
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06)