Longtime behavior of multidimensional wave equation with local Kelvin-Voigt damping

被引:3
|
作者
Han, Zhong-Jie [1 ]
Yu, Kai [2 ]
Zhang, Qiong [3 ]
机构
[1] Tianjin Univ, Sch Math, Tianjin Key Lab BIIT, Tianjin 300354, Peoples R China
[2] Nankai Univ, Chern Inst Math, Tianjin, Peoples R China
[3] Beijing Inst Technol, Sch Math, Beijing Key Lab MCAACI, Beijing, Peoples R China
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2022年 / 102卷 / 06期
基金
中国国家自然科学基金;
关键词
EXPONENTIAL STABILITY; ELASTIC-SYSTEMS; STABILIZATION; REGULARITY; DECAY;
D O I
10.1002/zamm.202000275
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the longtime behavior of a coupled multidimensional elastic-viscoelastic waves system is considered. This model consists of an elastic wave domain and an viscoelastic wave domain, connecting by a common interface. The dissipative damping is produced in the viscoelastic wave via the boundary connection. By the resolvent estimate together with microlocal analysis argument, we show that the corresponding semigroup is polynomially stable with decay rate t(-1) under certain conditions.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Stability of the wave equation with localized Kelvin-Voigt damping and dynamic Wentzell boundary conditions with delay
    Dahmani, Abdelhakim
    Khemmoudj, Ammar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) : 3649 - 3673
  • [22] Stability Results for a Laminated Beam with Kelvin-Voigt Damping
    Ramos, A. J. A.
    Freitas, M. M.
    Cabanillas, V. R.
    Dos Santos, M. J.
    Raposo, C. A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (05)
  • [23] Stability of coupled wave equations with variable coefficients, localised Kelvin-Voigt damping and time delay
    Herbadji, Houssem
    Khemmoudj, Ammar
    SEMIGROUP FORUM, 2024, 109 (02) : 390 - 423
  • [24] STABILITY OF A STRING WITH LOCAL KELVIN-VOIGT DAMPING AND NONSMOOTH COEFFICIENT AT INTERFACE
    Liu, Zhuangyi
    Zhang, Qiong
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (04) : 1859 - 1871
  • [25] Stability of the Timoshenko beam equation with one weakly degenerate local Kelvin-Voigt damping
    Liu, Ruijuan
    Zhang, Qiong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2025, 105 (03):
  • [26] On the spectrum of Euler-Bernoulli beam equation with Kelvin-Voigt damping
    Zhang, Guo-Dong
    Guo, Bao-Zhu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (01) : 210 - 229
  • [27] STABILIZATION OF WAVE EQUATION ON CUBOIDAL DOMAIN VIA KELVIN-VOIGT DAMPING: A CASE WITHOUT GEOMETRIC CONTROL CONDITION
    Yu, Kai
    Han, Zhong-Jie
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (03) : 1973 - 1988
  • [28] Asymptotic behavior of thermoelastic systems of laminated Timoshenko beams with Kelvin-Voigt damping
    Quispe Mendez, Teofanes
    Cabanillas, Victor R.
    Feng, Baowei
    APPLICABLE ANALYSIS, 2024, 103 (18) : 3400 - 3424
  • [29] Energy decay estimates of elastic transmission wave/beam systems with a local Kelvin-Voigt damping
    Hassine, Fathi
    INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (10) : 1933 - 1950
  • [30] Optimal stability results for laminated beams with Kelvin-Voigt damping and delay
    Cabanillas Zannini, Victor
    Potenciano-Machado, Leyter
    Quispe Mendez, Teofanes
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (02)