(2+1)-dimensional Broer-Kaup system of shallow water waves and similarity solutions with symbolic computation

被引:26
作者
Tian, B
Li, H
Gao, YT
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100083, Peoples R China
[3] Beijing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Fluid Mech, Beijing 100083, Peoples R China
[4] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100083, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2005年 / 56卷 / 05期
关键词
Broer-Kaup system; water waves; similarity solutions; symbolic computation;
D O I
10.1007/s00033-005-3021-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Broer-Kaup system is among the important integrable models for the shallow water waves. For a (2+1)-dimensional Broer-Kaup system and with symbolic computation, we present some similarity solutions, which are expressible in terms of the Jacobian elliptic functions and second Painleve transcendent. Our results are in agreement with the Painleve conjecture.
引用
收藏
页码:783 / 790
页数:8
相关论文
共 38 条
[1]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :715-721
[2]  
Bai CL, 2001, COMMUN THEOR PHYS, V35, P409
[3]   Symbolic calculation in chemistry: Selected examples [J].
Barnett, MP ;
Capitani, JF ;
von zur Gathen, J ;
Gerhard, J .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 100 (02) :80-104
[4]   NEW SIMILARITY REDUCTIONS AND PAINLEVE ANALYSIS FOR THE SYMMETRIC REGULARIZED LONG-WAVE AND MODIFIED BENJAMIN-BONA-MAHONEY EQUATIONS [J].
CLARKSON, PA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :3821-3848
[5]   NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION [J].
CLARKSON, PA ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2201-2213
[6]   Response to "Comment on 'A new mathematical approach for finding the solitary waves in dusty plasma'" [Phys. Plasmas 6, 4392 (1999)] [J].
Das, GC ;
Sarma, J .
PHYSICS OF PLASMAS, 1999, 6 (11) :4394-4397
[7]   Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method [J].
Fan, EG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (32) :6853-6872
[8]   A variable-coefficient unstable nonlinear Schrodinger model for the electron beam plasmas and Rayleigh-Taylor instability in nonuniform plasmas: Solutions and observable effects [J].
Gao, YT ;
Tian, B .
PHYSICS OF PLASMAS, 2003, 10 (11) :4306-4313
[9]   Computerized symbolic computation for the cylindrical Korteweg-de Vries equation [J].
Gao, YT ;
Tian, B .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (07) :1303-1316
[10]   Solitonic investigation on the general fifth-order shallow water wave models [J].
Gao, YT ;
Tian, B .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2001, 12 (06) :879-888